About this Journal Submit a Manuscript Table of Contents
Journal of Robotics
Volume 2012 (2012), Article ID 638394, 15 pages
http://dx.doi.org/10.1155/2012/638394
Research Article

Reconstruction of Riser Profiles by an Underwater Robot Using Inertial Navigation

1Biomedical Engineering Program (PEB/COPPE), The Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering, Universidade Federal do Rio de Janeiro, Avenida Horacio Macedo 2030, Bloco H-338, 21941-914 Rio de Janeiro, RJ, Brazil
2Department of Informatics and Automation, Universita Roma Tre, Via della Vasca Navale, 79, I 00146 Roma, Italy
3Subsin Engineering, Rua Beneditinos, 16, 12th floor, 20081-050 Rio de Janeiro, RJ, Brazil

Received 10 October 2011; Revised 11 January 2012; Accepted 15 January 2012

Academic Editor: Jorge Manuel Dias

Copyright © 2012 Luciano Luporini Menegaldo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. O’Brien and and J. Picksley, “State-of-art flexible riser integrity issues,” Tech. Rep. 2-1-4-181/SR01, 2001, UKOOA by MSC, Rev. 04.
  2. G. Chapin, “Inspection and monitoring of girassol hybrid riser towers,” in Proceedings of the Offshore Technology Conference (OTC '05), Huston, Tex, USA, 2005, OTC paper no. 17696.
  3. K. Hamilton and J. Evans, “Subsea pilotless inspection using an autonomous underwater vehicle (SPINAV): concepts and results,” in Proceedings of the OES/IEEE Oceans (OCEANS '05), pp. 775–781, Brest, France, June 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Ordonez, M. O. Sonnaillon, D. Murrin, N. Bose, and W. Qiu, “An advanced measurement system for vortex-induced-vibrations characterization in large-scale risers,” in Proceedings of the MTS/IEEE Conference Oceans (OCEANS '07), pp. 775–781, Vancouver, BC, Canada, 2007. View at Publisher · View at Google Scholar
  5. E. Veith, C. Bucherie, J. L. Lechien, J. L. Larrouse, and B. Rattoni, “Inspection of offshore flexible riser with electromagnetic and radiographic techniques,” in Proceedings of the 15th World Conference on Nondestructive Testing, pp. 404–408, Rome, Italy, 2000.
  6. D. Psarros, V. A. Papadimitriou, P. Chatzakos, V. A. Spais, and K. Hrissagis, “A service robot for Subsea flexible risers: analysis and systematic design,” IEEE Robotics and Automation Magazine, vol. 17, no. 1, pp. 55–63, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. P.-M. Lee, B.-H. Jun, K. Kim, J. Lee, T. Aoki, and T. Hyakudome, “Simulation of an inertial acoustic navigation system with range aiding for an autonomous underwater vehicle,” IEEE Journal of Oceanic Engineering, vol. 32, pp. 327–345, 2007.
  8. J. Jouffroy and J. Opderbecke, “Underwater vehicle navigation using diffusion-based trajectory observers,” IEEE Journal of Oceanic Engineering, vol. 32, pp. 313–326, 2007.
  9. C. He, E. Jorge, and L. M. Zurk, “Enhanced kalman filter algorithm using the invariance principle,” IEEE Journal of Oceanic Engineering, vol. 34, no. 4, pp. 575–585, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. M. F. Santos, L. L. Menegaldo, and M. O. Brito, “An outer device for universal inspectionof risers,” US Patent Application based on Brazilian PI 0705113-1, 2008.
  11. R. O’Grady, H.-J. Bakkenes, D. Lang, and A. Connaire, “Advancements in response prediction methods for deep water pipe-in-pipe flowline installation,” in Proceedings of the Offshore Technology Conference (OTC '08), Houston, Tex, USA, 2008, OTC paper no. 19400.
  12. P. J. O'Brien and J. F. McNamara, “Significant characteristics of three-dimensional flexible riser analysis,” Engineering Structures, vol. 54, no. 4, pp. 223–233, 1989. View at Scopus
  13. D. H. Titterton and J. L. Weston, Strapdown Inertial Navigation Technology, Edited by Herts, IEEE, London, UK, 2nd edition, 2004.
  14. B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: Modelling, Planning and Control, Springer, London, UK, 3rd edition, 2009.
  15. A. L. S. Pinho, Tension reduction in TLP platforms rigid risers, M.S. thesis, Civil Engineering Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil, 2001.
  16. C. L. Cunff, F. Biolley, E. Fontaine, S. Etienne, and M. L. Fancchinetti, “Vortex-inducedvibrations of raisers: theoretical, numerical and experimental investigation,” Oil and Gas Science and Technology (IFP), vol. 5, pp. 59–69, 2002.
  17. M. I. of Technology, “Vortex induced vibration data repository,” 2011, http://oe.mit.edu/VIV/.
  18. H. I. Weber, “Inertial Systems: basic foundations,” in Proceedings of V SBEIN 5th Brazilian Symposium on Inertial Engineering, Tutorial A, (in Portuguese), Rio de Janeiro,Brazil, 2007.
  19. W. S. Flenniken IV, Modeling inertial measurement units and analyzing the effect of their errors in navigation applications, M.S. thesis, Auburn University, Auburn, Ala, USA, 2005.
  20. D. W. Allan, “Statistics of atomic frequency standards,” IEEE Proceedings, vol. 54, pp. 221–230, 1966.
  21. IEEE, “IEEE Recommended Practice for Inertial Sensor Test Equipment, Instrumentation, Data Acquisition, and Analysis,” IEEE Std 1554-2005, IEEE Aerospace and Electronic Systems Society, 2005.
  22. B. Jalving, “Depth accuracy in seabed mapping with underwater vehicles,” in Proceedings of the OES/IEEE Oceans (OCEANS '99), pp. 973–978, Seattle, Wash, USA, September 1999. View at Scopus
  23. D. D. S. Santana, Terrestrial trajectory estimation using a low cost measurement unity and sensor fusion, M.S. thesis, Mechatronic Engineering Department, Polytechnic School, University of Sao Paulo, Sao Paulo, Brazil, 2005.
  24. H. Qi and J. B. Moore, “Direct Kalman filtering approach for GPS/INS integration,” IEEE Transactions on Aerospace and Electronic Systems, vol. 38, no. 2, pp. 687–693, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Sasaki, D. Brščić, and H. Hashimoto, “Human-observation-based extraction of path patterns for mobile robot navigation,” IEEE Transactions on Industrial Electronics, vol. 57, no. 4, pp. 1401–1410, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. L. L. Menegaldo, G. A. N. Ferreira, M. F. Santos, and R. S. Guerato, “Development and navigation of a mobile robot for floating production storage and offloading ship hull inspection,” IEEE Transactions on Industrial Electronics, vol. 56, no. 9, pp. 3717–3722, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. S. S. Saad and Z. S. Nakad, “A standalone rfid indoor positioning system using passive tags,” IEEE Transactions on Industrial Electronics, vol. 58, no. 5, pp. 1961–1970, 2011.
  28. S. H. P. Won, F. Golnaraghi, and W. W. Melek, “A fastening tool tracking system using an IMU and a position sensor with Kalman filters and a fuzzy expert system,” IEEE Transactions on Industrial Electronics, vol. 56, no. 5, pp. 1782–1792, 2009. View at Publisher · View at Google Scholar · View at Scopus