About this Journal Submit a Manuscript Table of Contents
Journal of Robotics
Volume 2012 (2012), Article ID 841291, 14 pages
http://dx.doi.org/10.1155/2012/841291
Research Article

Market-Based Approach to Mobile Surveillance Systems

1Computers & Control Engineering Department, Tanta University, Tanta 31111, Egypt
2Engineering Sciences Department, Suez Canal University, Suez 43721, Egypt
3Electrical and Computer Engineering Department, Waterloo University, Waterloo, ON, Canada N2L 3G1

Received 30 June 2012; Revised 13 September 2012; Accepted 14 September 2012

Academic Editor: Jorge Dias

Copyright © 2012 Ahmed M. Elmogy et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. M. D. Fave, S. Canu, L. Iocchi, D. Nardi, and V. A. Ziparo, “Multi-objective multi-robot surveillance,” in Proceedings of the 4th International Conference on Autonomous Robots and Agents (ICARA '09), pp. 68–73, Wellington, New Zealand, February 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. G. L. Foresti, C. S. Regazzoni, and P. K. Varshney, Multisensor Surveillance Systems: The Fusion Perspective, Kluwer Academic Publishers, 2003.
  3. J. C. Castillo, F. A. Cano, J. S. Cuerda, and A. F. Caballero, “Multisensory architecture for intelligent surveillance systems—integration of segmentation, tracking and activity analysis,” in Proceedings of 13th ICEIS International Conference, pp. 157–162, 2011.
  4. A. Elmogy, F. Karray, and A. Khamis, “Auctionbased consensus mechanism for cooperative tracking in multi-sensor surveillance systems,” in Proceedings of 4th International Conference in Humanoid, Nanotechnology, Information Technology, Communication Control, Environment and Management (HNICEM '09), pp. 149–158, Manila, Philippines, March 2009.
  5. H. F. Durrant-Whyte, “Sensor models and multisensor integration,” International Journal of Robotics Research, vol. 7, no. 6, pp. 97–113, 1988. View at Scopus
  6. B. P. Gerkey and M. J. Mataric, “Sold!: auction methods for multirobot coordination,” IEEE Transactions on Robotics and Automation, vol. 18, no. 5, pp. 758–768, 2002.
  7. M. B. Dias and A. Stentz, “A market approach to multi-robot coordination,” Tech. Rep. CMURI-TR-01-26, Carnegie Mellon University, Pittsburgh, Pa, USA, 2002.
  8. A. M. Elmogy, Market-based framework for mobile surveillance systems [Ph.D. thesis], University of Waterloo, Waterloo, ON, Canada, 2010.
  9. D. Makris and T. Ellis, “Learning semantic scene models from observing activity in visual surveillance,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 35, no. 3, pp. 397–408, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. X. Wang, S. Wang, and D. Bi, “Distributed visual-target-surveillance system in wireless sensor networks,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 39, no. 5, pp. 1134–1146, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Sayyaadi and M. Moarref, “A distributed algorithm for proportional task allocation in networks of mobile agents,” IEEE Transactions on Automatic Control, vol. 56, no. 2, pp. 405–410, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. R. R. Murphy, “Human-robot interaction in rescue robotics,” IEEE Transactions on Systems, Man and Cybernetics Part C, vol. 34, no. 2, pp. 138–153, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Zlot and A. Stentz, “Market-based multirobot coordination for complex tasks,” International Journal of Robotics Research, vol. 25, no. 1, pp. 73–101, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. A. M. Elmogy, A. M. Khamis, and F. O. Karray, “Dynamic complex task allocation in multisensor surveillance systems,” in Proceedings of the 3rd International Conference on Signals, Circuits and Systems (SCS '09), Djerba, Tunisia, November 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Isbitiren and O. B. Akan, “Three-dimensional underwater target tracking with acoustic sensor networks,” IEEE Transactions on Vehicular Technology, vol. 60, no. 8, pp. 3897–3906, 2011.
  16. N. Kalra, D. Ferguson, and A. Stentz, “Hoplites: a market-based framework for planned tight coordination in multirobot teams,” in Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1170–1177, April 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. X. F. Xie and J. Liu, “Multiagent optimization system for solving the traveling salesman problem (TSP),” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 39, no. 2, pp. 489–502, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. H. K. Tsai, J. M. Yang, Y. F. Tsai, and C. Y. Kao, “An evolutionary algorithm for large traveling salesman problems,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 34, no. 4, pp. 1718–1729, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Wurll, D. Henrich, and H. Worn, “Multi-goal path planning for industrial robots,” in Proceedings of International Conference on Robotics and Application (RA '99), Santa Barbara, Calif, USA, 1999.
  20. A. Kolling and S. Carpin, “Cooperative observation of multiple moving targets: an algorithm and its formalization,” International Journal of Robotics Research, vol. 26, no. 9, pp. 935–953, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Martinez-Jaramillo and E. P. K. Tsang, “An heterogeneous, endogenous and coevolutionary GP-based financial market,” IEEE Transactions on Evolutionary Computation, vol. 13, no. 1, pp. 33–55, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. R. M. Zlot, An auction-based approach to complex task allocation for multirobot teams [Ph.D. thesis], Pittsburgh, Pa, USA, 2006.
  23. M. B. Dias, TraderBots: a new paradigm for robust and efficient multi-robot coordination in dynamic environments [Ph.D. thesis], Robotics Institute, Carnegie Mellon University, 2004.
  24. X. Zheng, S. Koenig, and C. Tovey, “Improving sequential single-item auctions,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '06), pp. 2238–2244, Beijing, China, October 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Berhault, H. Huang, P. Keskinocak et al., “Robot exploration with combinatorial auctions,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1957–1962, October 2003. View at Scopus
  26. B. P. Gerkey and M. J. Mataric, “Sold!: auction methods for multi-robot control,” IEEE Transactions on Robotics and Automation, vol. 18, no. 5, pp. 758–768, 2002.
  27. S. C. Botelho and R. Alami, “M+: a scheme for multi-robot cooperation through negotiated task allocation and achievement,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '99), pp. 1234–1239, May 1999. View at Scopus
  28. F. Tang and S. Saha, “An anytime winner determination algorithm for time-extended multi-robot task allocation,” in Proceedings of the International Conference on Automation, Robotics, and Control Systems, pp. 123–130, 2008.
  29. M. H. Rothkopf, A. Pekeč, and R. M. Harstad, “Computationally manageable combinational auctions,” Management Science, vol. 44, no. 8, pp. 1131–1147, 1998. View at Scopus
  30. J. Sparbert, K. Dietmayer, and D. Streller, “Objecttracking in traffic scenes with multi-hypothesis approach using laser range images,” in Proceedings of IEEE 4th International Conference on Intelligent Transportation System, 2001.
  31. H. Zhao, J. Cui, H. Zha, K. Katabira, X. Shao, and R. Shibasaki, “Monitoring an intersection using a network of laser scanners,” in Proceedings of the 11th International IEEE Conference on Intelligent Transportation Systems (ITSC '08), pp. 428–433, Beijing, China, December 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Zhao and R. Shibasaki, “A novel system for tracking pedestrians using multiple single-row laser-range scanners,” IEEE Transactions on Systems, Man, and Cybernetics Part A, vol. 35, no. 2, pp. 283–291, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. B. Kluge, C. Köhler, and E. Prassler, “Fast and robust tracking of multiple moving objects with a laser range finder,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '01), pp. 1683–1688, May 2001. View at Scopus
  34. L. E. Parker, “Distributed algorithms for multi-robot observation of multiple moving targets,” Autonomous Robots, vol. 12, no. 3, pp. 231–255, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. J. B. MacQueen, “Some methods for classification and analysis of multivariate observations,” in Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297, University of California Press, Berkeley, Calif, USA, 1967.
  36. T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y. Wu, “An efficient k-means clustering algorithms: analysis and implementation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 7, pp. 881–892, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. H. Ritter, T. Martinetz, and K. Schulten, Neural Computation and Self-Organizing Maps: An Introduction, Addison-Wesley Longman, Boston, Mass, USA, 1st edition, 1992.
  38. T. Kohonen, Self-Organization and Associative Memory, Information Sciences, Heidelberg, Germany, 3rd edition, 1989.
  39. A. Kolling and S. Carpin, “Multirobot cooperation for surveillance of multiple moving targets—a new behavioral approach,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '06), pp. 1311–1316, May 2006. View at Publisher · View at Google Scholar · View at Scopus