About this Journal Submit a Manuscript Table of Contents
Journal of Toxicology
Volume 2012 (2012), Article ID 629781, 14 pages
http://dx.doi.org/10.1155/2012/629781
Research Article

Physiologically Based Pharmacokinetic (PBPK) Modeling of Metabolic Pathways of Bromochloromethane in Rats

1Research Experience for Undergraduate participant, Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA
2Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA
3National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC 27709, USA

Received 18 January 2012; Revised 27 March 2012; Accepted 30 March 2012

Academic Editor: Kannan Krishnan

Copyright © 2012 W. S. Cuello et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. U.S. EPA, “Bromochloromethane testing rationale,” Tech. Rep. CAS 74-97-5 (NTIS 201-16826A), U.S. Environmental Protection Agency, Washington, DC, USA, 2009.
  2. U.S. EPA, “Health and environmental effects document for bromochloromethane,” Tech. Rep. EPA/600/8-91/016 (NTSI PB91213702), U.S. Environmental Protection Agency, Washington, DC, USA, 1990.
  3. U.S. EPA, “The occurrence of disinfection by-products (dbps) of health concern in drinking water: results of a nationwide dbp occurrence study,” Tech. Rep. EPA/600/R-02/068, U.S. Environmental Protection Agency, Washington, DC, USA, 2002.
  4. S. D. Richardson, M. J. Plewa, E. D. Wagner, R. Schoeny, and D. M. DeMarini, “Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research,” Mutation Research, vol. 636, no. 1–3, pp. 178–242, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Y. Wei, Y. Liu, R. H. Dai et al., “Trihalomethanes and haloacetic acid species from the chlorination of algal organic matter and bromide,” Water Science and Technology, vol. 63, no. 6, pp. 1111–1120, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. C. M. Thompson, B. Sonawane, H. A. Barton et al., “Approaches for applications of physiologically based pharmacokinetic models in risk assessment,” Journal of Toxicology and Environmental Health B, vol. 11, no. 7, pp. 519–547, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. A. N. Edginton and G. Joshi, “Have physiologically-based pharmacokinetic models delivered?” Expert Opinion on Drug Metabolism and Toxicology, vol. 7, no. 8, pp. 929–934, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. M. L. Gargas and M. E. Andersen, “Determining kinetic constants of chlorinated ethane metabolism in the rat from rates of exhalation,” Toxicology and Applied Pharmacology, vol. 99, no. 2, pp. 344–353, 1989. View at Scopus
  9. M. L. Gargas, M. E. Andersen, and H. J. Clewell, “A physiologically based simulation approach for determining metabolic constants from gas uptake data,” Toxicology and Applied Pharmacology, vol. 86, no. 3, pp. 341–352, 1986. View at Scopus
  10. R. P. Brown, M. D. Delp, S. L. Lindstedt, L. R. Rhomberg, and R. P. Beliles, “Physiological parameter values for physiologically based pharmacokinetic models,” Toxicology and Industrial Health, vol. 13, no. 4, pp. 407–484, 1997. View at Scopus
  11. M. D. Delp, M. V. Evans, and C. Duan, “Effects of aging on cardiac output, regional blood flow, and body composition in Fischer-344 rats,” Journal of Applied Physiology, vol. 85, no. 5, pp. 1813–1822, 1998. View at Scopus
  12. M. A. Medinsky, P. J. Sabourin, R. F. Henderson, G. Lucier, and L. S. Birnbaum, “Differences in the pathways for metabolism of benzene in rats and mice simulated by a physiological model,” Environmental Health Perspectives, vol. 82, pp. 43–49, 1989. View at Scopus
  13. HSE, Bromochloromethane Risk Assessment Document, Health and Safety Executive Books, Suffolk, UK, 2000.
  14. S. L. Collom, R. M. Laddusaw, A. M. Burch, P. Kuzmic, M. D. Perry, and G. P. Miller, “CYP2E1 substrate inhibition: mechanistic interpretation through an effector site for monocyclic compounds,” Journal of Biological Chemistry, vol. 283, no. 6, pp. 3487–3496, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. M. W. Anders, “Chemical toxicology of reactive intermediates formed by the glutathione-dependent bioactivation of halogen-containing compounds,” Chemical Research in Toxicology, vol. 21, no. 1, pp. 145–159, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Thier, J. B. Taylor, S. E. Pemble et al., “Expression of mammalian glutathione S-transferase 5-5 in Salmonella typhimurium TA1535 leads to base-pair mutations upon exposure to dihalomethanes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 18, pp. 8576–8580, 1993. View at Scopus
  17. B. Kundu, S. D. Richardson, C. A. Granville et al., “Comparative mutagenicity of halomethanes and halonitromethanes in Salmonella TA100: structure-activity analysis and mutation spectra,” Mutation Research, vol. 554, no. 1-2, pp. 335–350, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. R. D. White, A. J. Gandolfi, G. T. Bowden, and I. G. Sipes, “Deuterium isotope effect on the metabolism and toxicity of 1,2-dibromoethane,” Toxicology and Applied Pharmacology, vol. 69, no. 2, pp. 170–178, 1983. View at Scopus
  19. T. S. Tracy, “Atypical cytochrome P450 kinetics: implications for drug discovery,” Drugs in R & D, vol. 7, no. 6, pp. 349–363, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. K. R. Korzekwa, N. Krishnamachary, M. Shou et al., “Evaluation of atypical cytochrome P450 kinetics with two-substrate models: evidence that multiple substrates can simultaneously bind to cytochrome P450 active sites,” Biochemistry, vol. 37, pp. 4137–4147, 1998.
  21. M. V. Evans, W. D. Crank, H. M. Yang, and J. E. Simmons, “Applications of sensitivity analysis to a physiologically based pharmacokinetic model for carbon tetrachloride in rats,” Toxicology and Applied Pharmacology, vol. 128, no. 1, pp. 36–44, 1994. View at Publisher · View at Google Scholar · View at Scopus
  22. K. McNally, R. Cotton, and G. D. Loizou, “A workflow for global sensitivity analysis of PBPK models,” Frontiers in Pharmacology, vol. 2, p. 31, 2011.
  23. J. C. Ramsey and M. E. Andersen, “A physiologically based description of the inhalation pharmacokinetics of styrene in rats and humans,” Toxicology and Applied Pharmacology, vol. 73, no. 1, pp. 159–175, 1984. View at Scopus
  24. M. V. Evans and J. C. Caldwell, “Evaluation of two different metabolic hypotheses for dichloromethane toxicity using physiologically based pharmacokinetic modeling for in vivo inhalation gas uptake data exposure in female B6C3F1 mice,” Toxicology and Applied Pharmacology, vol. 244, no. 3, pp. 280–290, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. R. A. Corley, A. L. Mendrala, F. A. Smith et al., “Development of a physiologically based pharmacokinetic model for chloroform,” Toxicology and Applied Pharmacology, vol. 103, no. 3, pp. 512–527, 1990. View at Publisher · View at Google Scholar · View at Scopus
  26. W. A. Chiu, M. S. Okino, and M. V. Evans, “Characterizing uncertainty and population variability in the toxicokinetics of trichloroethylene and metabolites in mice, rats, and humans using an updated database, physiologically based pharmacokinetic (PBPK) model, and Bayesian approach,” Toxicology and Applied Pharmacology, vol. 241, no. 1, pp. 36–60, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. M. V. Evans, W. A. Chiu, M. S. Okino, and J. C. Caldwell, “Development of an updated PBPK model for trichloroethylene and metabolites in mice, and its application to discern the role of oxidative metabolism in TCE-induced hepatomegaly,” Toxicology and Applied Pharmacology, vol. 236, no. 3, pp. 329–340, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. M. E. Andersen, H. J. Clewell, M. L. Gargas, F. A. Smith, and R. H. Reitz, “Physiologically based pharmacokinetics and the risk assessment process for methylene chloride,” Toxicology and Applied Pharmacology, vol. 87, no. 2, pp. 185–205, 1987. View at Scopus
  29. G. W. Jepson and J. N. McDougal, “Physiologically based modeling of nonsteady state dermal absorption of halogenated methanes from an aqueous solution,” Toxicology and Applied Pharmacology, vol. 144, no. 2, pp. 315–324, 1997. View at Publisher · View at Google Scholar · View at Scopus
  30. G. W. Jepson and J. N. McDougal, “Predicting vehicle effects on the dermal absorption of halogenated methanes using physiologically based modeling,” Toxicological Sciences, vol. 48, no. 2, pp. 180–188, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. M. K. Johnson, “Studies on glutathione S-alkyltransferase of the rat,” Biochemical Journal, vol. 98, no. 1, pp. 44–56, 1966. View at Scopus
  32. D. Pankow, M. Weise, and P. Hoffmann, “Effect of isoniazid or phenobarbital pretreatment on the metabolism of dihalomethanes to carbon monoxide,” Polish Journal of Occupational Medicine and Environmental Health, vol. 5, no. 3, pp. 245–250, 1992. View at Scopus
  33. J. Li, D. Q. Wei, J. F. Wang, and Y. X. Li, “A negative cooperativity mechanism of human CYP2E1 inferred from molecular dynamics simulations and free energy calculations,” Journal of Chemical Information and Modeling, vol. 51, pp. 3217–3225, 2011.
  34. A. Dey and S. M. Kumar, “Cytochrome P450 2E1 and hyperglycemia-induced liver injury,” Cell Biology and Toxicology, vol. 27, no. 4, pp. 285–310, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. P. R. Porubsky, K. M. Meneely, and E. E. Scott, “Structures of human cytochrome P-450 2E1: insights into the binding of inhibitors and both small molecular weight and fatty acid substrates,” Journal of Biological Chemistry, vol. 283, no. 48, pp. 33698–33707, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Cobelli and J. J. DiStefano, “Parameter and structural identifiability concepts and ambiguities: a critical review and analysis,” American Journal of Physiology, vol. 239, no. 1, pp. 7–24, 1980. View at Scopus
  37. C. Kim, R. O. Manning, R. P. Brown, and J. V. Bruckner, “Use of the vial equilibration technique for determination of metabolic rate constants for dichloromethane,” Toxicology and Applied Pharmacology, vol. 139, no. 2, pp. 243–251, 1996. View at Publisher · View at Google Scholar · View at Scopus
  38. D. E. Feierman and A. I. Cederbaum, “Inhibition of microsomal oxidation of ethanol by pyrazole and 4-methylpyrazole in vitro. Increased effectiveness after induction by pyrazole and 4-methylpyrazole,” Biochemical Journal, vol. 239, no. 3, pp. 671–677, 1986. View at Scopus
  39. D. R. Koop, “Hydroxylation of p-nitrophenol by rabbit ethanol-inducible cytochrome P-450 isozyme 3a,” Molecular Pharmacology, vol. 29, no. 4, pp. 399–404, 1986. View at Scopus