About this Journal Submit a Manuscript Table of Contents
Journal of Toxicology
Volume 2012 (2012), Article ID 760281, 18 pages
http://dx.doi.org/10.1155/2012/760281
Research Article

Reconstruction of Exposure to m-Xylene from Human Biomonitoring Data Using PBPK Modelling, Bayesian Inference, and Markov Chain Monte Carlo Simulation

1Health and Safety Laboratory, Harpur Hill, Buxton, Derbyshire SK17 9JN, UK
2Toxicology & Environmental Research and Consulting, The Dow Chemical Company, Midland, MI 48674, USA
3Mathematical Sciences Unit, Health and Safety Laboratory, Harpur Hill, Buxton, Derbyshire SK17 9JN, UK

Received 22 September 2011; Revised 8 December 2011; Accepted 14 December 2011

Academic Editor: Kannan Krishnan

Copyright © 2012 Kevin McNally et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Consortium to Perform Human Biomonitoring on a European Scale (COPHES), Human Biomonitoring For Europe: A Harmonised Approach: http://www.eu-hbm.info/cophes.
  2. ESBIO, Expert Team to Support Biomonitoring in Europe: http://www.eu-humanbiomonitoring.org/sub/esbio.htm.
  3. Centers for Disease Control and Prevention (CDC), National Biomonitoring Program: http://www.cdc.gov/biomonitoring/environmental_chemicals.html.
  4. Canadian Health Measures Survey (CHMS), Canadian Health Measures Survey: http://www.statcan.gc.ca/cgi-bin/imdb/p2SV.pl?Function=getSurvey&SDDS=5071&lang=en&db=imdb&adm=8&dis=2.
  5. P. J. Boogaard, S. M. Hays, and L. L. Aylward, “Human biomonitoring as a pragmatic tool to support health risk management of chemicals—examples under the EU REACH programme,” Regulatory Toxicology and Pharmacology, vol. 59, no. 1, pp. 125–132, 2011. View at Publisher · View at Google Scholar
  6. M. Manno, C. Viau, J. Cocker et al., “Biomonitoring for occupational health risk assessment (BOHRA),” Toxicology Letters, vol. 192, no. 1, pp. 3–16, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. National Research Council, Human Biomonitoring for Environmental Chemicals, National Academies Press, Washington, DC, USA, 2006.
  8. H. J. Clewell, Y. M. Tan, J. L. Campbell, and M. E. Andersen, “Quantitative Interpretation of Human Biomonitoring Data,” Toxicology and Applied Pharmacology, vol. 231, no. 1, pp. 122–133, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. K. H. Liao, Y. M. Tan, and H. J. Clewell, “Development of a screening approach to interpret human biomonitoring data on volatile organic compounds: reverse dosimetry on biomonitoring data for trichloroethylene,” Risk Analysis, vol. 27, no. 5, pp. 1223–1236, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. M. A. Lyons, R. S. H. Yang, A. N. Mayeno, and B. Reisfeld, “Computational toxicology of chloroform: reverse dosimetry using Bayesian inference, Markov chain Monte Carlo simulation, and human biomonitoring data,” Environmental Health Perspectives, vol. 116, no. 8, pp. 1040–1046, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. M. Tan, K. H. Liao, and H. J. Clewell, “Reverse dosimetry: interpreting trihalomethanes biomonitoring data using physiologically based pharmacokinetic modeling,” Journal of Exposure Science and Environmental Epidemiology, vol. 17, no. 7, pp. 591–603, 2007. View at Publisher · View at Google Scholar
  12. Y. M. Tan, K. Liao, R. Conolly, B. Blount, A. Mason, and H. Clewell, “Use of a physiologically based pharmacokinetic model to identify exposures consistent with human biomonitoring data for chloroform,” Journal of Toxicology and Environmental Health A, vol. 69, no. 18, pp. 1727–1756, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. P. G. Georgopoulos, A. Roy, and M. A. Gallo, “Reconstruction of short-term multi-route exposure to volatile organic compounds using physiologically based pharmacokinetic models,” Journal of Exposure Analysis and Environmental Epidemiology, vol. 4, no. 3, pp. 309–328, 1994. View at Scopus
  14. A. Roy and P. G. Georgopoulos, “Reconstructing week-long exposures to volatile organic compounds using physiologically based pharmacokinetic models,” Journal of Exposure Analysis and Environmental Epidemiology, vol. 8, no. 3, pp. 407–422, 1998. View at Scopus
  15. P. L. Mosquin, A. C. Licata, B. Liu, S. C. J. Sumner, and M. S. Okino, “Reconstructing exposures from small samples using physiologically based pharmacokinetic models and multiple biomarkers,” Journal of Exposure Science and Environmental Epidemiology, vol. 19, no. 3, pp. 284–297, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Gelman, F. Bois, and J. Jiang, “Physiological pharmacokinetic analysis using population modeling and informative prior distributions,” Journal of the American Statistical Association, vol. 91, no. 436, pp. 1400–1412, 1996. View at Scopus
  17. P. Bernillon and F. Y. Bois, “Statistical issues in toxicokinetic modeling: a Bayesian perspective,” Environmental Health Perspectives, vol. 108, no. 5, pp. 883–893, 2000. View at Scopus
  18. C. E. Hack, “Bayesian analysis of physiologically based toxicokinetic and toxicodynamic models,” Toxicology, vol. 221, no. 2-3, pp. 241–248, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Jonsson and G. Johanson, “Bayesian estimation of variability in adipose tissue blood flow in man by physiologically based pharmacokinetic modeling of inhalation exposure to toluene,” Toxicology, vol. 157, no. 3, pp. 177–193, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. T. R. Covington, P. Robinan Gentry, C. B. van Landingham, M. E. Andersen, J. E. Kester, and H. J. Clewell, “The use of Markov chain Monte Carlo uncertainty analysis to support a public health goal for perchloroethylene,” Regulatory Toxicology and Pharmacology, vol. 47, no. 1, pp. 1–18, 2007. View at Publisher · View at Google Scholar
  21. J. Hadamard, “Sur les problemes aux derivees partielles et leur signification physique,” Bulletin of the University of Princeton, vol. 13, pp. 49–52, 1902.
  22. M. D. Sohn, T. E. McKone, and J. N. Blancato, “Reconstructing population exposures from dose biomarkers: inhalation of trichloroethylene (TCE) as a case study,” Journal of Exposure Analysis and Environmental Epidemiology, vol. 14, no. 3, pp. 204–213, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. B. C. Allen, C. E. Hack, and H. J. Clewell, “Use of Markov chain Monte Carlo analysis with a physiologically-based pharmacokinetic model of methylmercury to estimate exposures in U.S. women of childbearing age,” Risk Analysis, vol. 27, no. 4, pp. 947–959, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. K. McNally, R. Cotton, and G. Loizou, “A workflow for global sensitivity analysis of PBPK models, Frontiers in Pharmacology,” Predictive Toxicity, vol. 2, article 31, pp. 1–21, 2011. View at Publisher · View at Google Scholar
  25. D. Dyne, J. Cocker, and H. K. Wilson, “A novel device for capturing breath samples for solvent analysis,” Science of the Total Environment, vol. 199, no. 1-2, pp. 83–89, 1997. View at Publisher · View at Google Scholar · View at Scopus
  26. G. D. Loizou, K. Jones, P. Akrill, D. Dyne, and J. Cocker, “Estimation of the dermal absorption of m-xylene vapor in humans using breath sampling and physiologically based pharmacokinetic analysis,” Toxicological Sciences, vol. 48, no. 2, pp. 170–179, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. R. W. Bonsnes and H. H. Taussky, “On the colorimetric determination of creatinine by the Jaffe reaction,” Journal of Biological Chemistry, vol. 158, pp. 581–591, 1945.
  28. R. Tardif, A. Sato, S. Lapare, and J. Brodeur, “Ethanol induced modification of m-xylene toxicokinetics in humans,” Occupational and Environmental Medicine, vol. 51, no. 3, pp. 187–191, 1994. View at Scopus
  29. L. Campbell, H. K. Wilson, A. M. Samuel, and D. Gompertz, “Interactions of m-xylene and aspirin metabolism in man,” British Journal of Industrial Medicine, vol. 45, no. 2, pp. 127–132, 1988. View at Scopus
  30. S. J. Franks, M. K. Spendiff, J. Cocker, and G. D. Loizou, “Physiologically based pharmacokinetic modelling of human exposure to 2-butoxyethanol,” Toxicology Letters, vol. 162, no. 2-3, pp. 164–173, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. A. J. MacDonald, A. Rostami-Hodjegan, G. T. Tucker, and D. A. Linkens, “Analysis of solvent central nervous system toxicity and ethanol interactions using a human population physiologically based kinetic and dynamic model,” Regulatory Toxicology and Pharmacology, vol. 35, no. 2, pp. 165–176, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. W. Tassaneeyakul, D. J. Birkett, J. W. Edwards et al., “Human cytochrome P450 isoform specificity in the regioselective metabolism of toluene and o-, m- and p-xylene 1,” Journal of Pharmacology and Experimental Therapeutics, vol. 276, no. 1, pp. 101–108, 1996. View at Scopus
  33. E. M. Howgate, K. Rowland Yeo, N. J. Proctor, G. T. Tucker, and A. Rostami-Hodjegan, “Prediction of in vivo drug clearance from in vitro data. I: impact of inter-individual variability,” Xenobiotica, vol. 36, no. 6, pp. 473–497, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. Z. E. Barter, M. K. Bayliss, P. H. Beaune et al., “Scaling factors for the extrapolation of in vivo metabolic drug clearance from in vitro data: reaching a consensus on values of human microsomal protein and hepatocellularity per gram of liver,” Current Drug Metabolism, vol. 8, no. 1, pp. 33–45, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Willmann, K. Höhn, A. Edginton et al., “Development of a physiology-based whole-body population model for assessing the influence of individual variability on the pharmacokinetics of drugs,” Journal of Pharmacokinetics and Pharmacodynamics, vol. 34, no. 3, pp. 401–431, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Engström, K. Husman, P. Pfäffli, and V. Riihimaki, “Evaluation of occupational exposure to xylene by blood, exhaled air and urine analysis,” Scandinavian Journal of Work, Environment and Health, vol. 4, no. 2, pp. 114–121, 1978. View at Scopus
  37. S. P. Brooks, “Markov chain Monte Carlo method and its application,” Journal of the Royal Statistical Society Series D, vol. 47, no. 1, pp. 69–100, 1998. View at Scopus
  38. R Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2010.
  39. H. Wickham, Ggplot2: Elegant Graphics for Data Analysis, Springer, New York, NY, USA, 2009.
  40. K. Takahashi, build_legend, http://tiny.cc/lkl06, 2010.
  41. M. E. Andersen, R. Sarangapani, R. H. Reitz, R. H. Gallavan, I. D. Dobrev, and K. P. Plotzke, “Physiological modeling reveals novel pharmacokinetic behavior for inhaled octamethylcyclotetrasiloxane in rats,” Toxicological Sciences, vol. 60, no. 2, pp. 214–231, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Saltelli, S. Tarantola, F. Campolongo, and M. Ratto, Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models, John Wiley & Sons, Chichester, UK, 2004.
  43. F. Campolongo and A. Saltelli, “Sensitivity analysis of an environmental model: an application of different analysis methods,” Reliability Engineering and System Safety, vol. 57, no. 1, pp. 49–69, 1997. View at Scopus
  44. G. Loizou, M. Spendiff, H. A. Barton et al., “Development of good modelling practice for physiologically based pharmacokinetic models for use in risk assessment: the first steps,” Regulatory Toxicology and Pharmacology, vol. 50, no. 3, pp. 400–411, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. World Health Organization (WHO), “Characterization and application of physiologically based pharmacokinetic models in risk assessment,” Harmonization Project Document 9, World Health Organization, Geneva, Switzerland, 2010.
  46. A. O'Hagan and J. E. Oakley, “Probability is perfect, but we can't elicit it perfectly,” Reliability Engineering and System Safety, vol. 85, no. 1–3, pp. 239–248, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. W. L. Oberkampf, J. C. Helton, C. A. Joslyn, S. F. Wojtkiewicz, and S. Ferson, “Challenge problems: uncertainty in system response given uncertain parameters,” Reliability Engineering and System Safety, vol. 85, no. 1–3, pp. 11–19, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. F. Y. Bois, M. Jamei, and H. J. Clewell, “PBPK modelling of inter-individual variability in the pharmacokinetics of environmental chemicals,” Toxicology, vol. 278, no. 3, pp. 256–267, 2010. View at Publisher · View at Google Scholar · View at Scopus