About this Journal Submit a Manuscript Table of Contents
Journal of Toxicology
Volume 2012 (2012), Article ID 941082, 10 pages
http://dx.doi.org/10.1155/2012/941082
Review Article

Development of Screening Tools for the Interpretation of Chemical Biomonitoring Data

1Regulatory and Technical Affairs Department, American Chemistry Council, Washington, DC 20002, USA
2Summit Toxicology, LLP, Lyons, CO 80540, USA
3Central Product Safety, Procter & Gamble, Cincinnati, OH 45253, USA
4Summit Toxicology, LLP, Falls Church, VA 22044, USA

Received 26 August 2011; Accepted 5 December 2011

Academic Editor: Jane C. Caldwell

Copyright © 2012 Richard A. Becker et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Meek, A. Boobis, K. Crofton, G. Heinemeyer, M. vanRaaij, and C. Vickers, “Risk assessment of combined exposure to multiple chemicals: a WHO/IPCS framework,” Regulatory Toxicology and Pharmacology, vol. 60, supplement 1, no. 2, pp. S1–S14, 2011.
  2. L. M. Plunkett, A. M. Kaplan, and R. A. Becker, “An enhanced tiered toxicity testing framework with triggers for assessing hazards and risks of commodity chemicals,” Regulatory Toxicology and Pharmacology, vol. 58, no. 3, pp. 382–394, 2010.
  3. M. Meek and V. Armstrong, “The assessment and management of industrial chemicals in Canada,” in Risk Assessment of Chemicals, K. van Leeuwen and T. Vermeire, Eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, 2007.
  4. H. Sanderson, J. L. Counts, K. L. Stanton, and R. I. Sedlak, “Exposure and prioritization—human screening data and methods for high production volume chemicals in consumer products: amine oxides a case study,” Risk Analysis, vol. 26, no. 6, pp. 1637–1657, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. I. C. Munro, R. A. Ford, E. Kennepohl, and J. G. Sprenger, “Correlation of structural class with no-observed-effect levels: a proposal for establishing a threshold of concern,” Food and Chemical Toxicology, vol. 34, no. 9, pp. 829–867, 1996. View at Publisher · View at Google Scholar · View at Scopus
  6. I. C. Munro, R. A. Ford, E. Kennepohl, and J. G. Sprenger, “Thresholds of toxicological concern based on structure-activity relationships,” Drug Metabolism Reviews, vol. 28, no. 1-2, pp. 209–217, 1996. View at Scopus
  7. I. C. Munro, A. G. Renwick, and B. Danielewska-Nikiel, “The Threshold of Toxicological Concern (TTC) in risk assessment,” Toxicology Letters, vol. 180, no. 2, pp. 151–156, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. Y. M. Tan, K. H. Liao, and H. J. Clewell, “Reverse dosimetry: interpreting trihalomethanes biomonitoring data using physiologically based pharmacokinetic modeling,” Journal of Exposure Science and Environmental Epidemiology, vol. 17, no. 7, pp. 591–603, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. S. M. Hays, R. A. Becker, H. W. Leung, L. L. Aylward, and D. W. Pyatt, “Biomonitoring equivalents: a screening approach for interpreting biomonitoring results from a public health risk perspective,” Regulatory Toxicology and Pharmacology, vol. 47, no. 1, pp. 96–109, 2007. View at Publisher · View at Google Scholar · View at PubMed
  10. J. Angerer, U. Ewers, and M. Wilhelm, “Human biomonitoring: state of the art,” International Journal of Hygiene and Environmental Health, vol. 210, no. 3-4, pp. 201–228, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. Centers for Disease Control and Prevention, “Fourth National Report on Human Exposures to Environmental Chemicals,” 2009, http://www.cdc.gov/ExposureReport/.
  12. S. M. Hays, L. L. Aylward, J. S. LaKind et al., “Guidelines for the derivation of biomonitoring equivalents: report from the Biomonitoring Equivalents Expert Workshop,” Regulatory Toxicology and Pharmacology, vol. 51, no. 3, pp. S4–S15, 2008. View at Publisher · View at Google Scholar · View at PubMed
  13. J. S. LaKind, L. L. Aylward, C. Brunk et al., “Guidelines for the communication of biomonitoring equivalents: report from the Biomonitoring Equivalents Expert Workshop,” Regulatory Toxicology and Pharmacology, vol. 51, no. 3, pp. S16–S26, 2008. View at Publisher · View at Google Scholar · View at PubMed
  14. M. Dourson and C. DeRosa, “The use of uncertainty factors in establishing safe levels of exposure,” in Statistics in Toxicology, D. Krewski and C. Franklin, Eds., Gordon and Breach Science, New York, NY, USA, 1991.
  15. J. Angerer, L. L. Aylward, S. M. Hays, B. Heinzow, and M. Wilhelm, “Human biomonitoring assessment values: approaches and data requirements,” International Journal of Hygiene and Environmental Health, vol. 214, no. 5, pp. 348–360, 2011. View at Publisher · View at Google Scholar · View at PubMed
  16. L. L. Aylward and S. M. Hays, “Biomonitoring-based risk assessment for hexabromocyclododecane (HBCD),” International Journal of Hygiene and Environmental Health, vol. 214, no. 3, pp. 179–187, 2011. View at Publisher · View at Google Scholar · View at PubMed
  17. Canada Health, “Draft Screening Assessment Cyclododecane, 1,2,5,6,9,10- Hexabromo-Chemical Abstracts Service,” Registry Number 3194-55-6. August 2010.
  18. European Union, “Risk Assessment Hexabromocyclododecane.CAS-No.:,” 25637-99-4. EINECS-No.:247-148-4, 2008.
  19. European Commission Scientific Committee on Consumer Products (ECSCCP). Scientific Committee on Consumer Products (SCCP) Opinion on Triclosan COLIPA No. P32, 2009.
  20. H. A. Barton, T. P. Pastoor, K. Baetcke et al., “The acquisition and application of absorption, distribution, metabolism, and excretion (ADME) data in agricultural chemical safety assessments,” Critical Reviews in Toxicology, vol. 36, no. 1, pp. 9–35, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. S. A. Saghir, A. L. Mendrala, M. J. Bartels et al., “Strategies to assess systemic exposure of chemicals in subchronic/chronic diet and drinking water studies,” Toxicology and Applied Pharmacology, vol. 211, no. 3, pp. 245–260, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. U.S. Environmental Protection Agency, “HPV Chemical Hazard Characterizations,” 2011.
  23. U.S. Environmental Protection Agency, “Risk-Based Prioritization (RBP) Decisions Summary,” 3/31/2009, 2011.
  24. WHO/IPCS, “Chemical-specific Adjustment Factors for Interspecies Differences and Human Variability: Guidance Document for Use in Dose/Concentration-Response Assessment,” 2005, http://www.inchem.org/documents/harmproj/harmproj/harmproj2.pdf.
  25. L. L. Aylward, R. A. Becker, C. R. Kirman, and S. M. Hays, “Assessment of margin of exposure based on biomarkers in blood: an exploratory analysis,” Regulatory Toxicology and Pharmacology, vol. 61, no. 1, pp. 44–52, 2011. View at Publisher · View at Google Scholar · View at PubMed
  26. R. Kroes, J. Kleiner, and A. Renwick, “The threshold of toxicological concern concept in risk assessment,” Toxicological Sciences, vol. 86, no. 2, pp. 226–230, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. R. Kroes, A. G. Renwick, M. Cheeseman et al., “Structure-based thresholds of toxicological concern (TTC): guidance for application to substances present at low levels in the diet,” Food and Chemical Toxicology, vol. 42, no. 1, pp. 65–83, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. J. P. Frawley, “Scientific evidence and common sense as a basis for food-packaging regulations,” Food and Cosmetics Toxicology, vol. 5, pp. 293–308, 1967. View at Scopus
  29. U.S. Food and Drug Administration, “Food Additives; Threshold of regulation for substances used in food-contact articles,” 21 CFR Parts 5, 25, 170, 171, and 174. Docket Nos. 77P-0122 and 92N-0181, 1995.
  30. A.M. Rulis, “De Minimus and the threshold of regulation. Food Protection Technology. Current and Projected Technologies for Food Protection—recommendations and implementation,” in Proceedings of the Conference for Food Protection, 1986.
  31. R. Kroes, C. Galli, I. Munro et al., “Threshold of toxicological concern for chemical substances present in the diet: a practical tool for assessing the need for toxicity testing,” Food and Chemical Toxicology, vol. 38, no. 2-3, pp. 255–312, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Blackburn, J. A. Stickney, H. L. Carlson-Lynch, P. M. McGinnis, L. Chappell, and S. P. Felter, “Application of the threshold of toxicological concern approach to ingredients in personal and household care products,” Regulatory Toxicology and Pharmacology, vol. 43, no. 3, pp. 249–259, 2005. View at Publisher · View at Google Scholar · View at PubMed
  33. P. Carthew, C. Clapp, and S. Gutsell, “Exposure based waiving: the application of the toxicological threshold of concern (TTC) to inhalation exposure for aerosol ingredients in consumer products,” Food and Chemical Toxicology, vol. 47, no. 6, pp. 1287–1295, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. S. Felter, R. W. Lane, M. E. Latulippe et al., “Refining the threshold of toxicological concern (TTC) for risk prioritization of trace chemicals in food,” Food and Chemical Toxicology, vol. 47, no. 9, pp. 2236–2245, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. R. Kroes, A. G. Renwick, V. Feron et al., “Application of the threshold of toxicological concern (TTC) to the safety evaluation of cosmetic ingredients,” Food and Chemical Toxicology, vol. 45, no. 12, pp. 2533–2562, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. R. Drew and J. Frangos, “The concentration of no toxicological concern (CoNTC): a risk assessment screening tool for air toxics,” Journal of Toxicology and Environmental Health A, vol. 70, no. 19, pp. 1584–1593, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. S. E. Escher, I. Tluczkiewicz, M. Batke et al., “Evaluation of inhalation TTC values with the database RepDose,” Regulatory Toxicology and Pharmacology, vol. 58, no. 2, pp. 259–274, 2010. View at Publisher · View at Google Scholar · View at PubMed
  38. S. Wu, K. Blackburn, J. Amburgey, J. Jaworska, and T. Federle, “A framework for using structural, reactivity, metabolic and physicochemical similarity to evaluate the suitability of analogs for SAR-based toxicological assessments,” Regulatory Toxicology and Pharmacology, vol. 56, no. 1, pp. 67–81, 2010. View at Publisher · View at Google Scholar · View at PubMed
  39. K. Blackburn, D. Bjerke, G. Daston et al., “Case studies to test: a framework for using structural, reactivity, metabolic and physicochemical similarity to evaluate the suitability of analogs for SAR-based toxicological assessments,” Regulatory Toxicology and Pharmacology, vol. 60, no. 1, pp. 120–135, 2011. View at Publisher · View at Google Scholar · View at PubMed
  40. W. A. Chiu and P. White, “Steady-state solutions to PBPK models and their applications to risk assessment I: route-to-route extrapolation of volatile chemicals,” Risk Analysis, vol. 26, no. 3, pp. 769–780, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. J. C. Lipscomb and T. S. Poet, “In vitro measurements of metabolism for application in pharmacokinetic modeling,” Pharmacology and Therapeutics, vol. 118, no. 1, pp. 82–103, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. L. L. Aylward, C. R. Kirman, B. C. Blount, and S. M. Hays, “Chemical-specific screening criteria for interpretation of biomonitoring data for volatile organic compounds (VOCs)—application of steady-state PBPK model solutions,” Regulatory Toxicology and Pharmacology, vol. 58, no. 1, pp. 33–44, 2010. View at Publisher · View at Google Scholar · View at PubMed
  43. D. M. Rotroff, B. A. Wetmore, D. J. Dix et al., “Incorporating human dosimetry and exposure into high-throughput in vitro toxicity screening,” Toxicological Sciences, vol. 117, no. 2, pp. 348–358, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. M. Bartels, D. Rick, P. Price et al., “Development of PK- and PBPK-based modeling tools for derivation of biomonitoring guidance,” in Proceedings of the 12th International Congress of Toxicology (IUTOX '10), July 2010.
  45. J. Louisse, E. de Jong, J. J. M. van de Sandt et al., “The use of in vitro toxicity data and physiologically based kinetic modeling to predict dose-response curves for in vivo developmental toxicity of glycol ethers in rat and man,” Toxicological Sciences, vol. 118, no. 2, Article ID kfq270, pp. 470–484, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. Health Council of the Netherlands, “Toxicity Testing: A more efficient approach,” http://www.gezondheidsraad.nl/sites/default/files/01@24E_0.pdf.