About this Journal Submit a Manuscript Table of Contents
Neural Plasticity
Volume 2012 (2012), Article ID 237913, 9 pages
http://dx.doi.org/10.1155/2012/237913
Research Article

ZD7288 Enhances Long-Term Depression at Early Postnatal Medial Perforant Path-Granule Cell Synapses

1Oscar Langendorff Institute of Physiology, University of Rostock, Gertrudenstraße 9, 18057 Rostock, Germany
2Institute of Neuroanatomy, University of Hamburg, Martinistraße 52, 20246 Hamburg, Germany

Received 15 March 2012; Revised 8 May 2012; Accepted 8 May 2012

Academic Editor: Clive Bramham

Copyright © 2012 Xiati Guli et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. A. McCormick and H. C. Pape, “Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones,” Journal of Physiology, vol. 431, pp. 291–318, 1990. View at Scopus
  2. T. A. Simeone, J. M. Rho, and T. Z. Baram, “Single channel properties of hyperpolarization-activated cation currents in acutely dissociated rat hippocampal neurones,” Journal of Physiology, vol. 568, no. 2, pp. 371–380, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. M. F. Nolan, G. Malleret, J. T. Dudman et al., “A behavioral role for dendritic integration: HCN1 channels constrain spatial memory and plasticity at inputs to distal dendrites of CA1 pyramidal neurons,” Cell, vol. 119, no. 5, pp. 719–732, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. R. A. Bender, T. Kirschstein, O. Kretz et al., “Localization of HCN1 channels to presynaptic compartments: novel plasticity that may contribute to hippocampal maturation,” Journal of Neuroscience, vol. 27, no. 17, pp. 4697–4706, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Tokay, M. Rohde, S. Krabbe et al., “HCN1 channels constrain DHPG-induced LTD at hippocampal Schaffer collateral-CA1 synapses,” Learning and Memory, vol. 16, no. 12, pp. 769–776, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Dietrich, H. Beck, T. Kral, H. Clusmann, C. E. Elger, and J. Schramm, “Metabotropic glutamate receptors modulate synaptic transmission in the perforant path: pharmacology and localization of two distinct receptors,” Brain Research, vol. 767, no. 2, pp. 220–227, 1997. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Kilbride, L. Huang, M. J. Rowan, and R. Anwyl, “Presynaptic inhibitory action of the group II metabotropic glutamate receptor agonists, LY354740 and DCG-IV,” European Journal of Pharmacology, vol. 356, no. 2-3, pp. 149–157, 1998. View at Publisher · View at Google Scholar · View at Scopus
  8. V. Chevaleyre and P. E. Castillo, “Assessing the role of Ih channels in synaptic transmission and mossy fiber LTP,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 14, pp. 9538–9543, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Chen, “ZD7288 inhibits postsynaptic glutamate receptor-mediated responses at hippocampal perforant path-granule cell synapses,” European Journal of Neuroscience, vol. 19, no. 3, pp. 643–649, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. P. K. Stanton, J. Winterer, C. P. Bailey et al., “Long-term depression of presynaptic release from the readily releasable vesicle pool induced by NMDA receptor-dependent retrograde nitric oxide,” Journal of Neuroscience, vol. 23, no. 13, pp. 5936–5944, 2003. View at Scopus
  11. A. Neitz, E. Mergia, U. T. Eysel, D. Koesling, and T. Mittmann, “Presynaptic nitric oxide/cGMP facilitates glutamate release via hyperpolarization-activated cyclic nucleotide-gated channels in the hippocampus,” European Journal of Neuroscience, vol. 33, no. 9, pp. 1611–1621, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. J. C. Magee, “Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons,” Journal of Neuroscience, vol. 18, no. 19, pp. 7613–7624, 1998. View at Scopus
  13. N. P. Poolos, M. Migliore, and D. Johnston, “Pharmacological upregulation of h-channels reduces the excitability of pyramidal neuron dendrites,” Nature Neuroscience, vol. 5, no. 8, pp. 767–774, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Fan, D. Fricker, D. H. Brager et al., “Activity-dependent decrease of excitability in rat hippocampal neurons through increases in Ih,” Nature Neuroscience, vol. 8, no. 11, pp. 1542–1551, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. D. H. Brager and D. Johnston, “Plasticity of intrinsic excitability during long-term depression is mediated through mGluR-dependent changes in Ih in hippocampal CA1 pyramidal neurons,” Journal of Neuroscience, vol. 27, no. 51, pp. 13926–13937, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Tsay, J. T. Dudman, and S. A. Siegelbaum, “HCN1 channels constrain synaptically evoked Ca2+ spikes in distal dendrites of CA1 pyramidal neurons,” Neuron, vol. 56, no. 6, pp. 1076–1089, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. M. S. George, L. F. Abbott, and S. A. Siegelbaum, “HCN hyperpolarization-activated cation channels inhibit EPSPs by interactions with M-type K+ channels,” Nature Neuroscience, vol. 12, no. 5, pp. 577–584, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Aponte, C. C. Lien, E. Reisinger, and P. Jonas, “Hyperpolarization-activated cation channels in fast-spiking interneurons of rat hippocampus,” Journal of Physiology, vol. 574, no. 1, pp. 229–243, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. Z. Huang, R. Lujan, I. Kadurin et al., “Presynaptic HCN1 channels regulate CaV 3.2 activity and neurotransmission at select cortical synapses,” Nature Neuroscience, vol. 14, no. 4, pp. 478–486, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. A. P. Southan, N. P. Morris, G. J. Stephens, and B. Robertson, “Hyperpolarization-activated currents in presynaptic terminals of mouse cerebellar basket cells,” Journal of Physiology, vol. 526, no. 1, pp. 91–97, 2000. View at Scopus
  21. C. R. Lupica, J. A. Bell, A. F. Hoffman, and P. L. Watson, “Contribution of the hyperpolarization-activated current (Ih) to membrane potential and GABA release in hippocampal interneurons,” Journal of Neurophysiology, vol. 86, no. 1, pp. 261–268, 2001. View at Scopus
  22. D. Debanne, “Information processing in the axon,” Nature Reviews Neuroscience, vol. 5, no. 4, pp. 304–316, 2004. View at Scopus
  23. D. DiFrancesco and P. Tortora, “Direct activation of cardiac pacemaker channels by intracellular cyclic AMP,” Nature, vol. 351, no. 6322, pp. 145–147, 1991. View at Publisher · View at Google Scholar · View at Scopus
  24. G. Zolles, N. Klöcker, D. Wenzel et al., “Pacemaking by HCN channels requires interaction with phosphoinositides,” Neuron, vol. 52, no. 6, pp. 1027–1036, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Pian, A. Bucchi, R. B. Robinson, and S. A. Siegelbaum, “Regulation of gating and rundown of HCN hyperpolarization-activated channels by exogenous and endogenous PIP2,” Journal of General Physiology, vol. 128, no. 5, pp. 593–604, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Feil and T. Kleppisch, “NO/cGMP-dependent modulation of synaptic transmission,” Handbook of Experimental Pharmacology, vol. 184, pp. 529–560, 2008. View at Scopus
  27. X. L. Zhang, Z. Y. Zhou, J. Winterer, W. Müller, and P. K. Stanton, “NMDA-dependent, but not group I metabotropic glutamate receptor-dependent, long-term depression at schaffer collateral-CA1 synapses is associated with long-term reduction of release from the rapidly recycling presynaptic vesicle pool,” Journal of Neuroscience, vol. 26, no. 40, pp. 10270–10280, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Wu, Y. Wang, M. J. Rowan, and R. Anwyl, “Evidence for involvement of the neuronal isoform of nitric oxide synthase during induction of long-term potentiation and long-term depression in the rat dentate gyrus in vitro,” Neuroscience, vol. 78, no. 2, pp. 393–398, 1997. View at Publisher · View at Google Scholar · View at Scopus