About this Journal Submit a Manuscript Table of Contents
Neural Plasticity
Volume 2012 (2012), Article ID 970136, 10 pages
http://dx.doi.org/10.1155/2012/970136
Review Article

Plasticity of Adult Sensorimotor System in Severe Brain Infarcts: Challenges and Opportunities

1School of Psychology, University of Surrey, Guildford GU2 7XH, UK
2Neurology Clincal Division, Hospital das Clinicas, São Paulo University, 05403-000 São Paulo, SP, Brazil
3Instituto Israelita de Ensino e Pesquisa, Hospital Israelita Albert Einstein, 05652-900 São Paulo, SP, Brazil

Received 4 December 2011; Accepted 9 January 2012

Academic Editor: Jacques-Olivier Coq

Copyright © 2012 Annette Sterr and Adriana Bastos Conforto. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Taub, “Harnessing brain plasticity through behavioral techniques to produce new treatments in neurorehabilitation,” American Psychologist, vol. 59, no. 8, pp. 692–704, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. J. Liepert, H. Bauder, W. H. R. Miltner, E. Taub, and C. Weiller, “Treatment-induced cortical reorganization after stroke in humans,” Stroke, vol. 31, no. 6, pp. 1210–1216, 2000. View at Scopus
  3. S. L. Wolf, P. A. Thompson, C. J. Winstein et al., “The EXCITE stroke trial: comparing early and delayed constraint-induced movement therapy,” Stroke, vol. 41, no. 10, pp. 2309–2315, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. E. V. Cooke, K. Mares, A. Clark, R. C. Tallis, and V. M. Pomeroy, “The effects of increased dose of exercise-based therapies to enhance motor recovery after stroke: a systematic review and meta-analysis,” BMC Medicine, vol. 8, article 60, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. L. V. Gauthier, E. Taub, C. Perkins, M. Ortmann, V. W. Mark, and G. Uswatte, “Remodeling the brain: plastic structural brain changes produced by different motor therapies after stroke,” Stroke, vol. 39, no. 5, pp. 1520–1525, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. M. H. Bowman, E. Taub, G. Uswatte et al., “A treatment for a chronic stroke patient with a plegic hand combining CI therapy with conventional rehabilitation procedures: case report,” NeuroRehabilitation, vol. 21, no. 2, pp. 167–176, 2006. View at Scopus
  7. V. M. Pomeroy, C. A. Clark, J. S. G. Miller, J. C. Baron, H. S. Markus, and R. C. Tallis, “The potential for utilizing the “mirror neurone system” to enhance recovery of the severely affected upper limb early after stroke: a review and hypothesis,” Neurorehabilitation and Neural Repair, vol. 19, no. 1, pp. 4–13, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. G. A. Donnan, M. Fisher, M. Macleod, and S. M. Davis, “Stroke,” The Lancet, vol. 371, no. 9624, pp. 1612–1623, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. M. Thorngren and B. Westling, “Rehabilitation and achieved health quality after stroke. A population-based study of 258 hospitalized cases followed for one year,” Acta Neurologica Scandinavica, vol. 82, no. 6, pp. 374–380, 1990. View at Scopus
  10. J. Bogousslavsky, G. Van Melle, and F. Regli, “The Lausanne Stroke Registry: analysis of 1,000 consecutive patients with first stroke,” Stroke, vol. 19, no. 9, pp. 1083–1092, 1988. View at Scopus
  11. A. Lipsanen and J. Jolkkonen, “Experimental approaches to study functional recovery following cerebral ischemia,” Cellular and Molecular Life Sciences, vol. 68, no. 18, pp. 3007–3017, 2011. View at Publisher · View at Google Scholar · View at PubMed
  12. F. Liu and L. D. McCullough, “Middle cerebral artery occlusion model in rodents: methods and potential pitfalls,” Journal of Biomedicine and Biotechnology, vol. 2011, Article ID 464701, 2011. View at Publisher · View at Google Scholar · View at PubMed
  13. I. MacRae, “Preclinical stroke research—advantages and disadvantages of the most common rodent models of focal ischaemia,” British Journal of Pharmacology, vol. 164, no. 4, pp. 1062–1078, 2011. View at Publisher · View at Google Scholar · View at PubMed
  14. T. J. Hudzik, A. Borrelli, P. Bialobok et al., “Long-term functional end points following middle cerebral artery occlusion in the rat,” Pharmacology Biochemistry and Behavior, vol. 65, no. 3, pp. 553–562, 2000. View at Publisher · View at Google Scholar
  15. J. Sharkey, I. M. Ritchie, and P. A. T. Kelly, “Perivascular microapplication of endothelin-1: a new model of focal cerebral ischaemia in the rat,” Journal of Cerebral Blood Flow and Metabolism, vol. 13, no. 5, pp. 865–871, 1993. View at Scopus
  16. R. L. Roof, G. P. Schielke, X. Ren, and E. D. Hall, “A comparison of long-term functional outcome after 2 middle cerebral artery occlusion models in rats,” Stroke, vol. 32, no. 11, pp. 2648–2657, 2001. View at Scopus
  17. K. Miyake, S. Takeo, H. Kaijihara, and E. P. Wei, “Sustained decrease in brain regional blood flow after microsphere embolism in rats,” Stroke, vol. 24, no. 3, pp. 415–420, 1993. View at Scopus
  18. M. Walberer, M. A. Rueger, M. Simard et al., “Dynamics of neuroinflammation in the macrosphere model of arterio-arterial embolic focal ischemia: an approximation to human stroke patterns,” Experimental and Translational Stroke Medicine, vol. 2, no. 1, article 22, 2010. View at Publisher · View at Google Scholar · View at PubMed
  19. R. L. Zhang, M. Chopp, Z. G. Zhang, Q. Jiang, and J. R. Ewing, “A rat model of focal embolic cerebral ischemia,” Brain Research, vol. 766, no. 1-2, pp. 83–92, 1997. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Orset, R. Macrez, A. R. Young et al., “Mouse model of in situ thromboembolic stroke and reperfusion,” Stroke, vol. 38, no. 10, pp. 2771–2778, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. H. Yao, H. Sugimori, K. Fukuda et al., “Photothrombotic middle cerebral artery occlusion and reperfusion laser system in spontaneously hypertensive rats,” Stroke, vol. 34, no. 11, pp. 2716–2721, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. D. W. Howells, M. J. Porritt, S. S. J. Rewell et al., “Different strokes for different folks: the rich diversity of animal models of focal cerebral ischemia,” Journal of Cerebral Blood Flow and Metabolism, vol. 30, no. 8, pp. 1412–1431, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. M. Fisher, “Recommendations for standards regarding preclinical neuroprotective and restorative drug development,” Stroke, vol. 30, no. 12, pp. 2752–2758, 1999. View at Scopus
  24. W. Hacke, M. Kaste, E. Bluhmki et al., “Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke,” The New England Journal of Medicine, vol. 359, no. 13, pp. 1317–1329, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. N. Wahlgren, N. Ahmed, A. Dávalos et al., “Thrombolysis with alteplase for acute ischaemic stroke in the Safe Implementation of Thrombolysis in Stroke-Monitoring Study (SITS-MOST): an observational study,” The Lancet, vol. 369, no. 9558, pp. 275–282, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. A. Furlan, R. Higashida, L. Wechsler et al., “Intra-arterial prourokinase for acute ischemic stroke. The PROACT II study: a randomized controlled trial,” Journal of the American Medical Association, vol. 282, no. 21, pp. 2003–2011, 1999. View at Publisher · View at Google Scholar
  27. C. A. Molina and J. Alvarez-Sabín, “Recanalization and reperfusion therapies for acute ischemic stroke,” Cerebrovascular Diseases, vol. 27, no. 1, pp. 162–167, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. W. Muangpaisan, J. L. Hinkle, M. Westwood, J. Kennedy, and A. M. Buchan, “Stroke in the very old: clinical presentations and outcomes,” Age and Ageing, vol. 37, no. 4, pp. 473–475, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. A. Di Carlo, M. Lamassa, G. Pracucci et al., “Stroke in the very old: clinical presentation and determinants of 3- month functional outcome: a European perspective,” Stroke, vol. 30, no. 11, pp. 2313–2319, 1999.
  30. M. C. Zurrú and G. Orzuza, “Epidemiological aspects of stroke in very old patients,” Cardiovascular and Hematological Disorders, vol. 11, no. 1, pp. 2–5, 2011.
  31. A. Popa-Wagner, S. T. Carmichael, Z. Kokaia, C. Kessler, and L. C. Walker, “The response of the aged brain to stroke: too much, too soon?” Current Neurovascular Research, vol. 4, no. 3, pp. 216–227, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Asplund, J. Karvanen, S. Giampaoli et al., “Relative risks for stroke by age, sex, and population based on follow-up of 18 european populations in the MORGAM project,” Stroke, vol. 40, no. 7, pp. 2319–2326, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. K. Uchino, D. Billheimer, and S. C. Cramer, “Entry criteria and baseline characteristics predict outcome in acute stroke trials,” Stroke, vol. 32, no. 4, pp. 909–916, 2001. View at Scopus
  34. J. I. Rojas, M. C. Zurrú, M. Romano, L. Patrucco, and E. Cristiano, “Acute ischemic stroke and transient ischemic attack in the very old-risk factor profile and stroke subtype between patients older than 80 years and patients aged less than 80 years,” European Journal of Neurology, vol. 14, no. 8, pp. 895–899, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. B. Manwani, F. Liu, Y. Xu, R. Persky, J. Li, and L. D. McCullough, “Functional recovery in aging mice after experimental stroke,” Brain, Behavior, and Immunity, vol. 25, no. 8, pp. 1689–1700, 2011. View at Publisher · View at Google Scholar · View at PubMed
  36. A. M. Demchuk, D. Tanne, M. D. Hill et al., “Predictors of good outcome after intravenous tPA for acute ischemic stroke,” Neurology, vol. 57, no. 3, pp. 474–480, 2001. View at Scopus
  37. H. T. H. Tu, B. C. V. Campbell, S. Christensen et al., “Pathophysiological determinants of worse stroke outcome in atrial fibrillation,” Cerebrovascular Diseases, vol. 30, no. 4, pp. 389–395, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. P. Coyle, “Outcomes to middle cerebral artery occlusion in hypertensive and normotensive rats,” Hypertension, vol. 6, no. 2, pp. I-69–I-74, 1984. View at Scopus
  39. A. Reza Noorian, R. G. Nogueira, and R. Gupta, “Neuroprotection in acute ischemic stroke,” Journal of Neurosurgical Sciences, vol. 55, no. 2, pp. 127–138, 2011.
  40. R. P. Allred, C. H. Cappellini, and T. A. Jones, “The “good” limb makes the “bad” limb worse: experience-dependent interhemispheric disruption of functional outcome after cortical infarcts in rats,” Behavioral Neuroscience, vol. 124, no. 1, pp. 124–132, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. R. J. Nudo, G. W. Milliken, W. M. Jenkins, and M. M. Merzenich, “Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys,” Journal of Neuroscience, vol. 16, no. 2, pp. 785–807, 1996. View at Scopus
  42. R. J. Nudo, B. M. Wise, F. SiFuentes, and G. W. Milliken, “Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct,” Science, vol. 272, no. 5269, pp. 1791–1794, 1996. View at Scopus
  43. E. Taub, G. Uswatte, V. W. Mark, and D. M. Morris, “The learned nonuse phenomenon: implications for rehabilitation,” Europa Medicophysica, vol. 42, no. 3, pp. 241–255, 2006. View at Scopus
  44. S. L. Wolf, C. J. Winstein, J. P. Miller et al., “Retention of upper limb function in stroke survivors who have received constraint-induced movement therapy: the EXCITE randomised trial,” The Lancet Neurology, vol. 7, no. 1, pp. 33–40, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. H. Nhan, K. Barquist, K. Bell, P. Esselman, I. R. Odderson, and S. C. Cramer, “Brain function early after stroke in relation to subsequent recovery,” Journal of Cerebral Blood Flow and Metabolism, vol. 24, no. 7, pp. 756–763, 2004. View at Scopus
  46. N. S. Ward, M. M. Brown, A. J. Thompson, and R. S. J. Frackowiak, “Neural correlates of outcome after stroke: a cross-sectional fMRI study,” Brain, vol. 126, no. 6, pp. 1430–1448, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. N. S. Ward, M. M. Brown, A. J. Thompson, and R. S. J. Frackowiak, “Neural correlates of motor recovery after stroke: a longitudinal fMRI study,” Brain, vol. 126, no. 11, pp. 2476–2496, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. N. S. Ward, J. M. Newton, O. B. C. Swayne et al., “Motor system activation after subcortical stroke depends on corticospinal system integrity,” Brain, vol. 129, no. 3, pp. 809–819, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. S. Bestmann, O. Swayne, F. Blankenburg et al., “The role of contralesional dorsal premotor cortex after stroke as studied with concurrent TMS-fMRI,” Journal of Neuroscience, vol. 30, no. 36, pp. 11926–11937, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. F. E. Buma, E. Lindeman, N. F. Ramsey, and G. Kwakkel, “Functional neuroimaging studies of early upper limb recovery after stroke: a systematic review of the literature,” Neurorehabilitation and Neural Repair, vol. 24, no. 7, pp. 589–608, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. N. Murase, J. Duque, R. Mazzocchio, and L. G. Cohen, “Influence of interhemispheric interactions on motor function in chronic stroke,” Annals of Neurology, vol. 55, no. 3, pp. 400–409, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. D. A. Nowak, C. Grefkes, M. Ameli, and G. R. Fink, “Interhemispheric competition after stroke: brain stimulation to enhance recovery of function of the affected hand,” Neurorehabilitation and Neural Repair, vol. 23, no. 7, pp. 641–656, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. M. Ameli, C. Grefkes, F. Kemper et al., “Differential effects of high-frequency repetitive transcranial magnetic stimulation over ipsilesional primary motor cortex in cortical and subcortical middle cerebral artery stroke,” Annals of Neurology, vol. 66, no. 3, pp. 298–309, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. D. A. Nowak, “The impact of stroke on the performance of grasping: usefulness of kinetic and kinematic motion analysis,” Neuroscience and Biobehavioral Reviews, vol. 32, no. 8, pp. 1439–1450, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. N. Takeuchi, T. Chuma, Y. Matsuo, I. Watanabe, and K. Ikoma, “Repetitive transcranial magnetic stimulation of contralesional primary motor cortex improves hand function after stroke,” Stroke, vol. 36, no. 12, pp. 2681–2686, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. C. G. Mansur, F. Fregni, P. S. Boggio et al., “A sham stimulation-controlled trial of rTMS of the unaffected hemisphere in stroke patients,” Neurology, vol. 64, no. 10, pp. 1802–1804, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. Y. H. Kim, S. H. You, M. H. Ko et al., “Repetitive transcranial magnetic stimulation-induced corticomotor excitability and associated motor skill acquisition in chronic stroke,” Stroke, vol. 37, no. 6, pp. 1471–1476, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. E. M. Khedr, M. R. Abdel-Fadeil, A. Farghali, and M. Qaid, “Role of 1 and 3 Hz repetitive transcranial magnetic stimulation on motor function recovery after acute ischaemic stroke,” European Journal of Neurology, vol. 16, no. 12, pp. 1323–1330, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. T. H. Emara, R. R. Moustafa, N. M. Elnahas et al., “Repetitive transcranial magnetic stimulation at 1Hz and 5Hz produces sustained improvement in motor function and disability after ischaemic stroke,” European Journal of Neurology, vol. 17, no. 9, pp. 1203–1209, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. S. T. Pendlebury, A. M. Blamire, M. A. Lee, P. Styles, and P. M. Matthews, “Axonal injury in the internal capsule correlates with motor impairment after stroke,” Stroke, vol. 30, no. 5, pp. 956–962, 1999. View at Scopus
  61. A. Sterr, S. Shen, A. J. Szameitat, and K. A. Herron, “The role of corticospinal tract damage in chronic motor recovery and neurorehabilitation: a pilot study,” Neurorehabilitation and Neural Repair, vol. 24, no. 5, pp. 413–419, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. R. Pineiro, S. Pendlebury, H. Johansen-Berg, and P. M. Matthews, “Functional MRI detects posterior shifts in primary sensorimotor cortex activation after stroke: evidence of local adaptive reorganization?” Stroke, vol. 32, no. 5, pp. 1134–1139, 2001. View at Scopus
  63. H. Johansen-Berg, M. F. S. Rushworth, M. D. Bogdanovic, U. Kischka, S. Wimalaratna, and P. M. Matthews, “The role of ipsilateral premotor cortex in hand movement after stroke,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 22, pp. 14518–14523, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. E. A. Fridman, T. Hanakawa, M. Chung, F. Hummel, R. C. Leiguarda, and L. G. Cohen, “Reorganization of the human ipsilesional premotor cortex after stroke,” Brain, vol. 127, no. 4, pp. 747–758, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  65. J. L. Hinkle, “Variables explaining functional recovery following motor stroke,” The Journal of Neuroscience Nursing, vol. 38, no. 1, pp. 6–12, 2006. View at Scopus
  66. G. Kwakkel, “Impact of intensity of practice after stroke: issues for consideration,” Disability and Rehabilitation, vol. 28, no. 13-14, pp. 823–830, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  67. G. Kwakkel, J. M. Veerbeek, E. E. H. van Wegen, R. Nijland, B. C. Harmeling-van der Wel, and D. W. J. Dippel, “Predictive value of the NIHSS for ADL outcome after ischemic hemispheric stroke: does timing of early assessment matter?” Journal of the Neurological Sciences, vol. 294, no. 1-2, pp. 57–61, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  68. K. Hilari, S. Northcott, P. Roy et al., “Psychological distress after stroke and aphasia: the first six months,” Clinical Rehabilitation, vol. 24, no. 2, pp. 181–190, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  69. G. M. S. Nys, M. J. E. van Zandvoort, H. B. van der Worp et al., “Early cognitive impairment predicts long-term depressive symptoms and quality of life after stroke,” Journal of the Neurological Sciences, vol. 247, no. 2, pp. 149–156, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  70. K. Narasimhalu, S. Ang, D. A. De Silva et al., “The prognostic effects of poststroke cognitive impairment no dementia and domain-specific cognitive impairments in nondisabled ischemic stroke patients,” Stroke, vol. 42, no. 4, pp. 883–888, 2011. View at Publisher · View at Google Scholar · View at PubMed
  71. A. Karl, N. Birbaumer, W. Lutzenberger, L. G. Cohen, and H. Flor, “Reorganization of motor and somatosensory cortex in upper extremity amputees with phantom limb pain,” Journal of Neuroscience, vol. 21, no. 10, pp. 3609–3618, 2001. View at Scopus
  72. H. Flor, T. Elbert, S. Knecht et al., “Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation,” Nature, vol. 375, no. 6531, pp. 482–484, 1995. View at Scopus
  73. T. Elbert, C. Pantev, C. Wienbruch, B. Rockstroh, and E. Taub, “Increased cortical representation of the fingers of the left hand in string players,” Science, vol. 270, no. 5234, pp. 305–307, 1995. View at Scopus
  74. P. Ragert, A. Schmidt, E. Altenmüller, and H. R. Dinse, “Superior tactile performance and learning in professional pianists: evidence for meta-plasticity in musicians,” European Journal of Neuroscience, vol. 19, no. 2, pp. 473–478, 2004. View at Publisher · View at Google Scholar · View at Scopus
  75. O. Collignon, G. Vandewalle, P. Voss et al., “Functional specialization for auditory-spatial processing in the occipital cortex of congenitally blind humans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 11, pp. 4435–4440, 2011. View at Publisher · View at Google Scholar · View at PubMed
  76. A. Sterr, M. M. Müller, T. Elbert, B. Rockstroh, C. Pantev, and E. Taub, “Perceptual correlates of changes in cortical representation of fingers in blind multifinger Braille readers,” Journal of Neuroscience, vol. 18, no. 11, pp. 4417–4423, 1998. View at Scopus
  77. B. Röder, W. Teder-Sälejärvi, A. Sterr, F. Rösler, S. A. Hillyard, and H. J. Neville, “Improved auditory spatial tuning in blind humans,” Nature, vol. 400, no. 6740, pp. 162–166, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  78. T. Elbert, A. Sterr, B. Rockstroh, C. Pantev, M. M. Müller, and E. Taub, “Expansion of the tonotopic area in the auditory cortex of the blind,” Journal of Neuroscience, vol. 22, no. 22, pp. 9941–9944, 2002. View at Scopus
  79. D. Caplan, “Language-related cortex in deaf individuals: functional specialization language or perceptual plasticity?” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 25, pp. 13476–13477, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  80. J. Rouger, S. Lagleyre, J. F. Démonet, B. Fraysse, O. Deguine, and P. Barone, “Evolution of crossmodal reorganization of the voice area in cochlear-implanted deaf patients,” 2011, Human Brain Mapping. In press. View at Publisher · View at Google Scholar · View at PubMed
  81. K. Debas, J. Carrier, P. Orban et al., “Brain plasticity related to the consolidation of motor sequence learning and motor adaptation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 41, pp. 17839–17844, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  82. A. Galván, “Neural plasticity of development and learning,” Human Brain Mapping, vol. 31, no. 6, pp. 879–890, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  83. D. J. Ostry, M. Darainy, A. A. G. Mattar, J. Wong, and P. L. Gribble, “Somatosensory plasticity and motor learning,” Journal of Neuroscience, vol. 30, no. 15, pp. 5384–5393, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  84. J. Zhang and Z. Kourtzi, “Learning-dependent plasticity with and without training in the human brain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 30, pp. 13503–13508, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  85. M. Tinazzi, G. Zanette, A. Polo et al., “Transient deafferentation in humans induces rapid modulation of primary sensory cortex not associated with subcortical changes: a somatosensory evoked potential study,” Neuroscience Letters, vol. 223, no. 1, pp. 21–24, 1997. View at Publisher · View at Google Scholar · View at Scopus
  86. T. D. Waberski, A. Dieckhöfer, U. Reminghorst, H. Buchner, and R. Gobbelé, “Short-term cortical reorganization by deafferentation of the contralateral sensory cortex,” NeuroReport, vol. 18, no. 11, pp. 1199–1203, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  87. F. C. Hummel and L. G. Cohen, “Drivers of brain plasticity,” Current Opinion in Neurology, vol. 18, no. 6, pp. 667–674, 2005. View at Scopus
  88. W. M. Jenkins, M. M. Merzenich, and G. Recanzone, “Neocortical representational dynamics in adult primates: implications for neuropsychology,” Neuropsychologia, vol. 28, no. 6, pp. 573–584, 1990. View at Publisher · View at Google Scholar · View at Scopus
  89. A. Wolters, F. Sandbrink, A. Schlottmann et al., “A temporally asymmetric Hebbian rule governing plasticity in the human motor cortex,” Journal of Neurophysiology, vol. 89, no. 5, pp. 2339–2345, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  90. G. H. Recanzone, M. M. Merzenich, and W. M. Jenkins, “Frequency discrimination training engaging a restricted skin surface results in an emergence of a cutaneous response zone in cortical area 3a,” Journal of Neurophysiology, vol. 67, no. 5, pp. 1057–1070, 1992. View at Scopus
  91. G. H. Recanzone, M. M. Merzenich, W. M. Jenkins, K. A. Grajski, and H. R. Dinse, “Topographic reorganization of the hand representation in cortical area 3b of owl monkeys trained in a frequency-discrimination task,” Journal of Neurophysiology, vol. 67, no. 5, pp. 1031–1056, 1992. View at Scopus
  92. G. H. Recanzone, C. E. Schreiner, and M. M. Merzenich, “Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys,” Journal of Neuroscience, vol. 13, no. 1, pp. 87–103, 1993. View at Scopus
  93. R. Verleger, S. Adam, M. Rose, C. Vollmer, B. Wauschkuhn, and D. Kömpf, “Control of hand movements after striatocapsular stroke: high-resolution temporal analysis of the function of ipsilateral activation,” Clinical Neurophysiology, vol. 114, no. 8, pp. 1468–1476, 2003. View at Publisher · View at Google Scholar · View at Scopus
  94. A. Terzoudi, T. Vorvolakos, I. Heliopoulos, M. Livaditis, K. Vadikolias, and H. Piperidou, “Sleep architecture in stroke and relation to outcome,” European Neurology, vol. 61, no. 1, pp. 16–22, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  95. A. Sterr, K. Herron, D. J. Dijk, and J. Ellis, “Time to wake-up: sleep problems and daytime sleepiness in long-term stroke survivors,” Brain Injury, vol. 22, no. 7-8, pp. 575–579, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  96. M. M. Siccoli, N. Rölli-Baumeler, P. Achermann, and C. L. Bassetti, “Correlation between sleep and cognitive functions after hemispheric ischaemic stroke,” European Journal of Neurology, vol. 15, no. 6, pp. 565–572, 2008. View at Publisher · View at Google Scholar · View at PubMed
  97. T. P. Brawn, K. M. Fenn, H. C. Nusbaum, and D. Margoliash, “Consolidating the effects of waking and sleep on motor-sequence learning,” Journal of Neuroscience, vol. 30, no. 42, pp. 13977–13982, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  98. M. A. Nitsche, M. Jakoubkova, N. Thirugnanasambandam et al., “Contribution of the premotor cortex to consolidation of motor sequence learning in humans during sleep,” Journal of Neurophysiology, vol. 104, no. 5, pp. 2603–2614, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  99. C. A. Rieth, D. J. Cai, E. A. McDevitt, and S. C. Mednick, “The role of sleep and practice in implicit and explicit motor learning,” Behavioural Brain Research, vol. 214, no. 2, pp. 470–474, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  100. M. P. Walker, T. Brakefield, J. Seidman, A. Morgan, J. A. Hobson, and R. Stickgold, “Sleep and the time course of motor skill learning,” Learning and Memory, vol. 10, no. 4, pp. 275–284, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  101. C. Siengsukon and L. A. Boyd, “Sleep enhances off-line spatial and temporal motor learning after stroke,” Neurorehabilitation and Neural Repair, vol. 23, no. 4, pp. 327–335, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  102. C. F. Siengsukon and L. A. Boyd, “Sleep to learn after stroke: implicit and explicit off-line motor learning,” Neuroscience Letters, vol. 451, no. 1, pp. 1–5, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  103. M. Jeannerod, “Neural simulation of action: a unifying mechanism for motor cognition,” NeuroImage, vol. 14, no. 1, pp. S103–S109, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  104. B. D. Berman, S. G. Horovitz, G. Venkataraman, and M. Hallett, “Self-modulation of primary motor cortex activity with motor and motor imagery tasks using real-time fMRI-based neurofeedback,” NeuroImage, vol. 59, no. 2, pp. 917–925, 2012. View at Publisher · View at Google Scholar · View at PubMed
  105. B. Lorey, S. Pilgramm, M. Bischoff et al., “Activation of the parieto-premotor network is associated with vivid motor imagery-A parametric fMRI study,” PLoS ONE, vol. 6, no. 5, article e20368, 2011. View at Publisher · View at Google Scholar · View at PubMed
  106. E. Raffin, P. Giraux, and K. T. Reilly, “The moving phantom: motor execution or motor imagery?” Cortex. In press. View at Publisher · View at Google Scholar · View at PubMed
  107. J. Majdandić, H. Bekkering, H. T. Van Schie, and I. Toni, “Movement-specific repetition suppression in ventral and dorsal premotor cortex during action observation,” Cerebral Cortex, vol. 19, no. 11, pp. 2736–2745, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  108. A. J. Szameitat, S. Shen, and A. Sterr, “Motor imagery of complex everyday movements. An fMRI study,” NeuroImage, vol. 34, no. 2, pp. 702–713, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  109. A. J. Szameitat, S. Shen, and A. Sterr, “Effector-dependent activity in the left dorsal premotor cortex in motor imagery,” European Journal of Neuroscience, vol. 26, no. 11, pp. 3303–3308, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  110. C. Kranczioch, S. Mathews, P. J. A. Dean, and A. Sterr, “On the equivalence of executed and imagined movements: evidence from lateralized motor and nonmotor potentials,” Human Brain Mapping, vol. 30, no. 10, pp. 3275–3286, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  111. C. Kranczioch, S. Mathews, P. Dean, and A. Sterr, “Task complexity differentially affects executed and imagined movement preparation: evidence from movement-related potentials,” PLoS ONE, vol. 5, no. 2, article e9284, 2010. View at Publisher · View at Google Scholar · View at PubMed
  112. N. Sharma, V. M. Pomeroy, and J. C. Baron, “Motor imagery: a backdoor to the motor system after stroke?” Stroke, vol. 37, no. 7, pp. 1941–1952, 2006. View at Publisher · View at Google Scholar · View at PubMed
  113. M. Ietswaart, M. Johnston, H. C. Dijkerman et al., “Mental practice with motor imagery in stroke recovery: randomized controlled trial of efficacy,” Brain, vol. 134, no. 5, pp. 1373–1386, 2011. View at Publisher · View at Google Scholar · View at PubMed
  114. S. J. Page, P. Levine, and A. Leonard, “Mental practice in chronic stroke: results of a randomized, placebo-controlled trial,” Stroke, vol. 38, no. 4, pp. 1293–1297, 2007. View at Publisher · View at Google Scholar · View at PubMed
  115. R. E. Barclay-Goddard, T. J. Stevenson, W. Poluha, and L. Thalman, “Mental practice for treating upper extremity deficits in individuals with hemiparesis after stroke,” Cochrane Database of Systematic Reviews, vol. 5, article CD005950, 2011.
  116. D. M. Nilsen, G. Gillen, and A. M. Gordon, “Use of mental practice to improve upper-limb recovery after stroke: a systematic review,” American Journal of Occupational Therapy, vol. 64, no. 5, pp. 695–708, 2010. View at Publisher · View at Google Scholar
  117. R. Camicioli, M. M. Moore, G. Sexton, D. B. Howieson, and J. A. Kaye, “Age-related brain changes associated with motor function in healthy older people,” Journal of the American Geriatrics Society, vol. 47, no. 3, pp. 330–334, 1999. View at Scopus
  118. A. Sterr and P. Dean, “Neural correlates of movement preparation in healthy ageing,” European Journal of Neuroscience, vol. 27, no. 1, pp. 254–260, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  119. M. Shinohara, “Adaptations in motor unit behavior in elderly adults,” Current Aging Science, vol. 4, no. 3, pp. 200–208, 2011.
  120. C. M. Saucedo Marquez, T. Ceux, and N. Wenderoth, “Attentional demands of movement observation as tested by a dual task approach,” PLoS ONE, vol. 6, no. 11, article e27292, 2011. View at Publisher · View at Google Scholar · View at PubMed
  121. C. A. Roller, H. S. Cohen, K. T. Kimball, and J. J. Bloomberg, “Effects of normal aging on visuo-motor plasticity,” Neurobiology of Aging, vol. 23, no. 1, pp. 117–123, 2002. View at Publisher · View at Google Scholar · View at Scopus
  122. S. de Vries, et al., “Recovery of motor imagery ability in Stroke patients,” Rehabilitation Research and Practice, vol. 2011, pp. 283–840, 2011.
  123. A. J. Szameitat, S. Shen, and A. Sterr, “Cortical activation during executed, imagined, observed, and passive wrist movements in healthy volunteers and stroke patients—a within-subject fMRI study,” Neuroimage. In press.