About this Journal Submit a Manuscript Table of Contents
Oxidative Medicine and Cellular Longevity
Volume 2012 (2012), Article ID 139327, 11 pages
http://dx.doi.org/10.1155/2012/139327
Research Article

Intensification of Doxorubicin-Related Oxidative Stress in the Heart by Hypothyroidism Is Not Related to the Expression of Cytochrome P450 NADPH-Reductase and Inducible Nitric Oxide Synthase, As Well As Activity of Xanthine Oxidase

1Medical Biology Unit, Medical University of Lublin, 20-059 Lublin, Poland
2Department of Human Anatomy, Medical University of Lublin, 20-059 Lublin, Poland
3Department of Pulmonary Diseases and Pediatric Rheumatology, Medical University of Lublin, 20-059 Lublin, Poland
4Department of Histology and Embryology, Medical University of Lublin, 20-059 Lublin, Poland

Received 21 May 2012; Accepted 5 July 2012

Academic Editor: Ana Fortuno

Copyright © 2012 Jaroslaw Dudka et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Minotti, P. Menna, E. Salvatorelli, G. Cairo, and L. Gianni, “Anthracyclines: molecular advances and pharmacologie developments in antitumor activity and cardiotoxicity,” Pharmacological Reviews, vol. 56, no. 2, pp. 185–229, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. A. L. A. Ferreira, L. S. Matsubara, and B. B. Matsubara, “Anthracycline-induced cardiotoxicity,” Cardiovascular and Hematological Agents in Medicinal Chemistry, vol. 6, no. 4, pp. 278–281, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. A. E. Ashour, M. M. Sayed-Ahmed, A. R. Abd-Allah et al., “Metformin rescues the myocardium from doxorubicin-induced energy starvation and mitochondrial damage in rats,” Oxidative Medicine and Cellular Longevity, vol. 2012, Article ID 434195, 13 pages, 2012. View at Publisher · View at Google Scholar
  4. J. Dudka, F. Burdan, A. Korga et al., “The diagnosis of anthracycline-induced cardiac damage and heart failure,” Postępy Higieny i Medycyny Doświadczalnej, vol. 63, pp. 225–233, 2009. View at Scopus
  5. Y. W. Zhang, J. Shi, Y. J. Li, and L. Wei, “Cardiomyocyte death in doxorubicin-induced cardiotoxicity,” Archivum Immunologiae et Therapiae Experimentalis, vol. 57, pp. 435–445, 2009.
  6. V. A. Sardão, P. J. Oliveira, J. Holy, C. R. Oliveira, and K. B. Wallace, “Morphological alterations induced by doxorubicin on H9c2 myoblasts: nuclear, mitochondrial, and cytoskeletal targets,” Cell Biology and Toxicology, vol. 25, no. 3, pp. 227–243, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. J. M. Berthiaume and K. B. Wallace, “Persistent alterations to the gene expression profile of the heart subsequent to chronic doxorubicin treatment,” Cardiovascular Toxicology, vol. 7, no. 3, pp. 178–191, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Tokarska-Schlattner, T. Wallimann, and U. Schlattner, “Alterations in myocardial energy metabolism induced by the anti-cancer drug doxorubicin,” Comptes Rendus Biologies, vol. 329, no. 9, pp. 657–668, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Dudka, “The role of reactive oxygen and nitrogen species in calcium and iron homeostasis dysregulation in anthracycline cardiotoxicity,” Postępy Higieny i Medycyny Doświadczalnej, vol. 60, pp. 241–247, 2006. View at Scopus
  10. M. J. Mihm, F. Yu, D. M. Weinstein, P. J. Reiser, and J. A. Bauer, “Intracellular distribution of peroxynitrite during doxorubicin cardiomyopathy: Evidence for selective impairment of myofibrillar creatine kinase,” British Journal of Pharmacology, vol. 135, no. 3, pp. 581–588, 2002. View at Scopus
  11. N. B. Surmeli, N. K. Litterman, A. F. Miller, and J. T. Groves, “Peroxynitrite mediates active site tyrosine nitration in manganese superoxide dismutase. evidence of a role for the carbonate radical anion,” Journal of the American Chemical Society, vol. 132, no. 48, pp. 17174–17185, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Deng, A. Kruger, A. L. Kleschyov, L. Kalinowski, A. Daiber, and L. Wojnowski, “Gp91phox-containing NAD(P)H oxidase increases superoxide formation by doxorubicin and NADPH,” Free Radical Biology and Medicine, vol. 42, no. 4, pp. 466–473, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. N. R. Bachur, S. L. Gordon, and M. V. Gee, “A general mechanism for microsomal activation of quinone anticancer agents to free radicals,” Cancer Research, vol. 38, no. 6, pp. 1745–1750, 1978. View at Scopus
  14. S. Fogli, P. Nieri, and M. C. Breschi, “The role of nitric oxide in anthracycline toxicity and prospects for pharmacologic prevention of cardiac damage,” FASEB Journal, vol. 18, no. 6, pp. 664–675, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Mukhopadhyay, M. Rajesh, S. Bátkai et al., “Role of superoxide, nitric oxide, and peroxynitrite in doxorubicin-induced cell death in vivo and in vitro,” American Journal of Physiology, vol. 296, no. 5, pp. H1466–H1483, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. D. L. Gustafson, J. D. Swanson, and C. A. Pritsos, “Role fo xanthine oxidase in the potentiation of doxorubicin-induced cardiotoxicity by mitomycin C,” Cancer Communications, vol. 3, no. 9, pp. 299–304, 1991. View at Scopus
  17. K. J. A. Davies and J. H. Doroshow, “Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase,” Journal of Biological Chemistry, vol. 261, no. 7, pp. 3060–3067, 1986. View at Scopus
  18. M. K. Tee, N. Huang, I. Damm, and W. L. Miller, “Transcriptional regulation of the human p450 oxidoreductase gene: Hormonal regulation and influence of promoter polymorphisms,” Molecular Endocrinology, vol. 25, no. 5, pp. 715–731, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. H. C. Li, D. Liu, and D. J. Waxman, “Transcriptional induction of hepatic NADPH: cytochrome P450 oxidoreductase by thyroid hormone,” Molecular Pharmacology, vol. 59, no. 5, pp. 987–995, 2001. View at Scopus
  20. P. A. Ram and D. J. Waxman, “Thyroid hormone stimulation of NADPH P450 reductase expression in liver and extrahepatic tissues. Regulation by multiple mechanisms,” Journal of Biological Chemistry, vol. 267, no. 5, pp. 3294–3301, 1992. View at Scopus
  21. A. Virdis, R. Colucci, M. Fornai et al., “Inducible nitric oxide synthase is involved in endothelial dysfunction of mesenteric small arteries from hypothyroid rats,” Endocrinology, vol. 150, no. 2, pp. 1033–1042, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. H. U. Bergmeyer, K. Gawehn, and M. W. Grassel, Methods of Enzymatic Analysis, vol. 1, Edited by H. U. Bergmeyer, Academic Press, New York, NY, USA, 1974.
  23. A. P. Garner, M. J. I. Paine, I. Rodriguez-Crespo et al., “Nitric oxide synthases catalyze the activation of redox cycling and bioreductive anticancer agents,” Cancer Research, vol. 59, no. 8, pp. 1929–1934, 1999. View at Scopus
  24. J. Vásquez-Vivar, P. Martasek, N. Hogg, B. S. S. Masters, K. A. Pritchard Jr., and B. Kalyanaraman, “Endothelial nitric oxide synthase-dependent superoxide generation from adriamycin,” Biochemistry, vol. 36, no. 38, pp. 11293–11297, 1997. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Chattopadhyay, G. Zaidi, K. Das, and G. B. N. Chainy, “Effects of hypothyroidism induced by 6-n-propylthiouracil and its reversal by T3 on rat heart superoxide dismutase, catalase and lipid peroxidation,” Indian Journal of Experimental Biology, vol. 41, no. 8, pp. 846–849, 2003. View at Scopus
  26. M. Jain, D. A. Brenner, L. Cui et al., “Glucose-6-phosphate dehydrogenase modulates cytosolic redox status and contractile phenotype in adult cardiomyocytes,” Circulation Research, vol. 93, no. 2, pp. e9–16, 2003. View at Scopus
  27. A. Lombardi, L. Beneduce, M. Moreno et al., “3,5-Diiodo-L-thyronine regulates glucose-6-phosphate dehydrogenase activity in the rat,” Endocrinology, vol. 141, no. 5, pp. 1729–1734, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. C. M. Palmeira, J. Serrano, D. W. Kuehl, and K. B. Wallace, “Preferential oxidation of cardiac mitochondrial DNA following acute intoxication with doxorubicin,” Biochimica et Biophysica Acta, vol. 1321, no. 2, pp. 101–106, 1997. View at Publisher · View at Google Scholar · View at Scopus
  29. E. Fadillioglu, E. Oztas, H. Erdogan et al., “Protective effects of caffeic acid phenethyl ester on doxorubicin-induced cardiotoxicity in rats,” Journal of Applied Toxicology, vol. 24, no. 1, pp. 47–52, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. M. A. Mansour, A. G. El-Din, M. N. Nagi, O. A. Al-Shabanah, and A. M. Al-Bekairi, “Nω-Nitro-L-Arginine Methylester Ameliorates Myocardial Toxicity Induced by Doxorubicin,” Journal of Biochemistry and Molecular Biology, vol. 36, no. 6, pp. 593–596, 2003. View at Scopus
  31. Z. Bolaman, C. Cicek, G. Kadikoylu et al., “The protective effects of amifostine on adriamycin-induced acute cardiotoxicity in rats,” Tohoku Journal of Experimental Medicine, vol. 207, no. 4, pp. 249–253, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. X. Sun and Y. J. Kang, “Prior increase in metallothionein levels is required to prevent doxorubicin cardiotoxicity,” Experimental Biology and Medicine, vol. 227, no. 8, pp. 652–657, 2002. View at Scopus
  33. T. Li, I. Danelisen, and P. K. Singal, “Early changes in myocardial antioxidant enzymes in rats treated with adriamycin,” Molecular and Cellular Biochemistry, vol. 232, no. 1-2, pp. 19–26, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. T. Grune, T. Reinheckel, and K. J. A. Davies, “Degradation of oxidized proteins in K562 human hematopoietic cells by proteasome,” Journal of Biological Chemistry, vol. 271, no. 26, pp. 15504–15509, 1996. View at Publisher · View at Google Scholar · View at Scopus
  35. T. Grune, T. Reinheckel, M. Joshi, and K. J. A. Davies, “Proteolysis in cultured liver epithelial cells during oxidative stress. Role of the multicatalytic proteinase complex, proteasome,” Journal of Biological Chemistry, vol. 270, no. 5, pp. 2344–2351, 1995. View at Publisher · View at Google Scholar · View at Scopus
  36. W. G. Siems, H. Zollner, T. Grune, and H. Esterbauer, “Metabolic fate of 4-hydroxynonenal in hepatocytes: 1,4-dihydroxynonene is not the main product,” Journal of Lipid Research, vol. 38, no. 3, pp. 612–622, 1997. View at Scopus
  37. W. M. Przybyszewski, J. Kasperczyk, K. Stoklosa, and A. Bkhiyan, “DNA damage induced by products of lipid peroxidation,” Postępy Higieny i Medycyny Doświadczalnej, vol. 59, pp. 75–81, 2005.
  38. L. J. Marnett, J. N. Riggins, and J. D. West, “Endogenous generation of reactive oxidants and electrophiles and their reactions with DNA and protein,” Journal of Clinical Investigation, vol. 111, no. 5, pp. 583–593, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. L. J. Marnett, “Lipid peroxidation - DNA damage by malondialdehyde,” Mutation Research, vol. 424, no. 1-2, pp. 83–95, 1999. View at Publisher · View at Google Scholar · View at Scopus
  40. P. Møller and H. Wallin, “Adduct formation, mutagenesis and nucleotide excision repair of DNA damage produced by reactive oxygen species and lipid peroxidation product,” Mutation Research, vol. 410, no. 3, pp. 271–290, 1998. View at Publisher · View at Google Scholar · View at Scopus
  41. I. Dalle-Donne, R. Rossi, D. Giustarini, A. Milzani, and R. Colombo, “Protein carbonyl groups as biomarkers of oxidative stress,” Clinica Chimica Acta, vol. 329, no. 1-2, pp. 23–38, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Flores-Morales, H. Gullberg, L. Fernandez et al., “Patterns of liver gene expression governed by TRβ,” Molecular Endocrinology, vol. 16, no. 6, pp. 1257–1268, 2002. View at Publisher · View at Google Scholar · View at Scopus