Structural Control and Health Monitoring
Publishing Collaboration
More info
Wiley Hindawi logo
 Journal metrics
See full report
Acceptance rate34%
Submission to final decision117 days
Acceptance to publication21 days
CiteScore9.200
Journal Citation Indicator1.160
Impact Factor5.4

Submit your research today

Structural Control and Health Monitoring is now an open access journal, and articles will be immediately available to read and reuse upon publication.

Read our author guidelines

 Journal profile

Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. 

 Editor spotlight

Chief Editor, Professor Lucia Faravelli, is based at Zhejiang University, China. Her research interests include structural reliability, stochastic mechanics, and structural control.

 Society information

Structural Control and Health Monitoring is the official journal of the European Association for the Control of Structures.

Latest Articles

More articles
Research Article

The Parameter Identification of Structure with TMD considering Seismic Soil-Structure Interaction

Parameter identification is of great significance for the postearthquake performance evaluation of structure equipped with tuned mass damper (TMD). However, the soil-structure interaction (SSI) effects have not been considered in the parameter identification of structure with TMD yet, which influence the dynamic characteristics and seismic responses of structures. This paper aims at proposing a framework for identifying the physical parameters of soil-structure-TMD system. Firstly, the accelerated particle swarm optimization (APSO) algorithm is combined with the search space reduction (SSR) method. Then, the frequency response function and transmissibility function are adopted for output-input and input-only cases, respectively, and a simplified mechanical model for soil-structure-TMD system is employed. Next, the measured responses are used to identify the physical parameters of structure with TMD considering SSI effects. Finally, the effectiveness of the proposed identification method is investigated, and the influences of frequency band and noise pollution on the identification performance are discussed. The results show that the proposed strategy can identify the system physical parameters accurately and quickly. It is worth noting that high frequency bands and noise pollution may lead to estimation error, especially for output-only case.

Research Article

Dynamic Modeling and Active Vibration Control of Piezoelectric Laminated Structure Based on Macrofiber Composite

In this paper, a ground-based experimental system for solar array active vibration suppression has been established. Firstly, in order to establish an accurate model of the solar array, the solar array is regarded as a flexible cantilevered thin plate, and the corresponding dynamical equations are derived using the absolute nodal coordinate method. In addition, in this paper, the more advanced MFC piezoelectric patch is used instead of the traditional PZT piezoelectric ceramic patch. The electromechanical coupling finite element model of the P1-type MFC patch is established and substituted into the kinetic equation of the solar array. Finally, the accuracy of the electromechanical coupling modeling and the control effect of active vibration suppression were verified using the PID control. A set of experimental frameworks for evaluating the active vibration suppression effect, including the free vibration test, sinusoidal perturbation test, and white noise perturbation test, as well as the analysis strategy of the test data, are established.

Research Article

A Bayesian Structural Modal Updating Method Based on Sparse Grid and Ensemble Kalman Filter

This study presents a sparse grid interpolation and ensemble Kalman filter (EnKF)-based Markov Chain Monte Carlo (MCMC) method (SG-EnMCMC). Initiating with the formulation of a recursive equation for the state space vector, derived from the structural dynamic equation, this study adopts a dimensionality reduction strategy. This approach involves a separation of physical parameters and the state space vector. The acquisition of physical parameters is accomplished through sampling, utilizing sample moments to substitute population moments, thereby mitigating the need for computationally high-dimensional covariance matrix calculations. To further streamline the recursive equation of the state space vector, a sparse grid method is employed for interpolation. This step simplifies the process while ensuring superior accuracy compared to the Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF). Subsequent to this, acceptance rates and the final parameter posterior distribution within the MCMC framework are derived. The efficiency of the proposed method is assessed through validation in two shaking table experiments.

Research Article

Damage Detection in Bridge Structures through Compressed Sensing of Crowdsourced Smartphone Data

Traditional bridge health monitoring methods that necessitate sensor installation are not only costly but also time-consuming. In contrast, utilizing smartphone data collected from vehicles as they traverse bridges offers an efficient and cost-effective alternative. This paper introduces a cutting-edge damage detection framework for indirect monitoring of bridge structures, leveraging a substantial volume of acceleration data collected from smartphones in vehicles passing over the bridge. Our innovative approach addresses the challenge of collecting and transmitting high-frequency data while preserving smartphone battery life and data plans through the integration of compressed sensing (CS) into the crowdsensing-based monitoring framework. CS employs random sampling and signal recovery from a significantly reduced number of samples compared to the requirements of the Nyquist–Shannon sampling theorem. In the proposed framework, acceleration signals from vehicles are initially acquired using smartphone sensors, undergo compression, and are then transmitted for signal reconstruction. Subsequently, feature extraction and dimensionality reduction are performed using Mel-frequency cepstral coefficients and principal component analysis. Damage indexes are computed based on the dissimilarity between probability distribution functions utilizing the Wasserstein distance metric. The efficacy of the proposed methodology in bridge monitoring has been substantiated through the utilization of numerical models and a lab-scale bridge. Furthermore, the feasibility of implementing the framework in a real-world application has been investigated, leveraging the smartphone data from 102 vehicle trips on the Golden Gate Bridge. The results demonstrate that damage detection using the reconstructed signals obtained through compressed sensing achieves comparable performance to that obtained with the original data sampled at the Nyquist measurement sampling rate. However, it is observed that to retain severity information within the signals for accurate damage severity identification, the compression level should be limited to 20%. These findings affirm that compressed sensing significantly reduces the data collection requirements for crowdsensing-based monitoring applications, without compromising the accuracy of damage detection while preserving essential damage-sensitive information within the dataset.

Research Article

Enhanced Strain Measurement Sensitivity with Gold Nanoparticle-Doped Distributed Optical Fibre Sensing

Nanoparticle- (NP-) doped optical fibres show the potential to increase the signal-to-noise ratio and thus the sensitivity of optical fibre strain detection for structural health monitoring. In this paper, our previous experimental/simulation study is extended to a design study for strain monitoring. 100 nm spherical gold NPs were randomly seeded in the optical fibre core to increase the intensity of backscattered light. Backscattered light spectra were obtained in different wavelength ranges around the infrared C-band and for different gauge lengths. Spectral shift values were obtained by cross-correlation of the spectra before and after strain change. The results showed that the strain accuracy has a positive correlation with the relative spectral sensitivity and that the strain precision decreases with increasing noise. Based on the simulated results, a formula for the sensitivity of the NP-doped optical fibre sensor was obtained using an aerospace case study to provide realistic strain values. An improved method is proposed to increase the accuracy of strain detection based on increasing the relative spectral sensitivity, and the results showed that the error was reduced by about 50%, but at the expense of a reduced strain measurement range and more sensitivity to noise. These results contribute to the better application of NP-doped optical fibres for strain monitoring.

Research Article

Condition Monitoring and Quantitative Evaluation of Railway Bridge Substructures Using Vehicle-Induced Vibration Responses by Sparse Measurement

Bridge substructure failure has been responsible for numerous recorded bridge collapses, particularly for small- and medium-span bridges, so it is crucial to effectively monitor the performance of the bridge substructures for efficient maintenance and management. The current vibration-based approaches for quantitatively evaluating bridge substructures rely on in-situ experiments with a multitude of sensors or impact vibration test, making it challenging to implement long-term online monitoring. This paper proposes an accurate, low cost, and practicable method to achieve online quantitative monitoring of railway bridge substructures using only one vibration sensor and operational train-induced vibration responses. The newly derived flexible-base Timoshenko beam models, along with the random decrement technique and Levenberg–Marquardt–Fletcher algorithm, are employed to identify the modal parameters and quantitatively assess the condition of bridge substructures. The proposed method is numerically verified through an established 3D train-bridge-foundation coupling system considering different damage scenarios. In addition, a real-world application is also conducted on the 2nd Songhua River bridge in the Harbin–Dalian high-speed railway, aiming at examining the effectiveness and robustness of the method in condition monitoring of bridge substructure under a complete freeze-thaw cycle. The results indicate that the proposed methodology is effective in extracting the modal parameters and monitoring the state evolution of the bridge substructures, which offers an efficient and accurate strategy for condition monitoring and quantitative evaluation of railway bridge substructures.

Structural Control and Health Monitoring
Publishing Collaboration
More info
Wiley Hindawi logo
 Journal metrics
See full report
Acceptance rate34%
Submission to final decision117 days
Acceptance to publication21 days
CiteScore9.200
Journal Citation Indicator1.160
Impact Factor5.4
 Submit Evaluate your manuscript with the free Manuscript Language Checker

We have begun to integrate the 200+ Hindawi journals into Wiley’s journal portfolio. You can find out more about how this benefits our journal communities on our FAQ.