About this Journal Submit a Manuscript Table of Contents
Stroke Research and Treatment
Volume 2013 (2013), Article ID 819340, 10 pages
http://dx.doi.org/10.1155/2013/819340
Review Article

Subarachnoid Hemorrhage, Spreading Depolarizations and Impaired Neurovascular Coupling

1Department of Pharmacology, University of Vermont College of Medicine, Burlington, VT 05405-0068, USA
2Neurovascular Research Laboratory, Department of Radiology, Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
3Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 52990, Israel

Received 27 December 2012; Accepted 8 February 2013

Academic Editor: Ryszard M. Pluta

Copyright © 2013 Masayo Koide et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. B. Bederson, E. S. Connolly Jr., H. H. Batjer, et al., “Guidelines for the management of aneurysmal subarachnoid hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association,” Stroke, vol. 40, no. 3, pp. 994–1025, 2009.
  2. M. D. Vergouwen, M. Vermeulen, J. van Gijn et al., “Definition of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage as an outcome event in clinical trials and observational studies: proposal of a multidisciplinary research group,” Stroke, vol. 41, no. 10, pp. 2391–2395, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. H. H. Dietrich and R. G. Dacey Jr., “Molecular keys to the problems of cerebral vasospasm,” Neurosurgery, vol. 46, no. 3, pp. 517–530, 2000. View at Scopus
  4. N. F. Kassell, T. Sasaki, A. R. T. Colohan, and G. Nazar, “Cerebral vasospasm following aneurysmal subarachnoid hemorrhage,” Stroke, vol. 16, no. 4, pp. 562–572, 1985. View at Scopus
  5. J. Hansen-Schwartz, P. Vajkoczy, R. L. Macdonald, R. M. Pluta, and J. H. Zhang, “Cerebral vasospasm: looking beyond vasoconstriction,” Trends in Pharmacological Sciences, vol. 28, no. 6, pp. 252–256, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. J. H. Zhang, R. M. Pluta, J. Hansen-Schwartz et al., “Cerebral vasospasm following subarachnoid hemorrhage: time for a new world of thought,” Neurological Research, vol. 31, no. 2, pp. 151–158, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. A. A. Rabinstein, S. Weigand, J. L. D. Atkinson, and E. F. M. Wijdicks, “Patterns of cerebral infarction in aneurysmal subarachnoid hemorrhage,” Stroke, vol. 36, no. 5, pp. 992–997, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. R. P. Ostrowski, A. R. Colohan, and J. H. Zhang, “Molecular mechanisms of early brain injury after subarachnoid hemorrhage,” Neurological Research, vol. 28, no. 4, pp. 399–414, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. G. F. Prunell, N. A. Svendgaard, K. Alkass, and T. Mathiesen, “Delayed cell death related to acute cerebral blood flow changes following subarachnoid hemorrhage in the rat brain,” Journal of Neurosurgery, vol. 102, no. 6, pp. 1046–1054, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. F. A. Sehba, J. Hou, R. M. Pluta, and J. H. Zhang, “The importance of early brain injury after subarachnoid hemorrhage,” Progress in Neurobiology, vol. 97, no. 1, pp. 14–37, 2012.
  11. O. Altay, H. Suzuki, Y. Hasegawa, et al., “Isoflurane attenuates blood-brain barrier disruption in ipsilateral hemisphere after subarachnoid hemorrhage in mice,” Stroke, vol. 43, no. 9, pp. 2513–2516, 2012.
  12. T. Doczi, “The pathogenetic and prognostic significance of blood-brain barrier damage at the acute stage of aneurysmal subarachnoid haemorrhage. Clinical and experimental studies,” Acta Neurochirurgica, vol. 77, no. 3-4, pp. 110–132, 1985. View at Scopus
  13. K. Fassbender, B. Hodapp, S. Rossol et al., “Inflammatory cytokines in subarachnoid haemorrhage: association with abnormal blood flow velocities in basal cerebral arteries,” Journal of Neurology Neurosurgery and Psychiatry, vol. 70, no. 4, pp. 534–537, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Murakami, M. Koide, T. M. Dumont, S. R. Russell, B. I. Tranmer, and G. C. Wellman, “Subarachnoid hemorrhage induces gliosis and increased expression of the pro-inflammatory cytokine high mobility group box 1 protein,” Translational Stroke Research, vol. 2, no. 1, pp. 72–79, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Marc Simard, Z. Geng, S. Kyoon Woo et al., “Glibenclamide reduces inflammation, vasogenic edema, and caspase-3 activation after subarachnoid hemorrhage,” Journal of Cerebral Blood Flow and Metabolism, vol. 29, no. 2, pp. 317–330, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Ishiguro, C. B. Puryear, E. Bisson et al., “Enhanced myogenic tone in cerebral arteries from a rabbit model of subarachnoid hemorrhage,” American Journal of Physiology, Heart and Circulatory Physiology, vol. 283, no. 6, pp. H2217–H2225, 2002. View at Scopus
  17. M. Koide, M. A. Nystoriak, G. Krishnamoorthy et al., “Reduced Ca2+ spark activity after subarachnoid hemorrhage disables BK channel control of cerebral artery tone,” Journal of Cerebral Blood Flow and Metabolism, vol. 31, no. 1, pp. 3–16, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. M. A. Nystoriak, K. P. O'Connor, S. K. Sonkusare, J. E. Brayden, M. T. Nelson, and G. C. Wellman, “Fundamental increase in pressure-dependent constriction of brain parenchymal arterioles from subarachnoid hemorrhage model rats due to membrane depolarization,” American Journal of Physiology, Heart and Circulatory Physiology, vol. 300, no. 3, pp. H803–H812, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. M. D. I. Vergouwen, M. Vermeulen, B. A. Coert, E. S. G. Stroes, and Y. B. W. E. M. Roos, “Microthrombosis after aneurysmal subarachnoid hemorrhage: an additional explanation for delayed cerebral ischemia,” Journal of Cerebral Blood Flow and Metabolism, vol. 28, no. 11, pp. 1761–1770, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. J. P. Dreier, S. Major, A. Manning et al., “Cortical spreading ischaemia is a novel process involved in ischaemic damage in patients with aneurysmal subarachnoid haemorrhage,” Brain, vol. 132, no. 7, pp. 1866–1881, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Koide, A. D. Bonev, M. T. Nelson, and G. C. Wellman, “Inversion of neurovascular coupling by subarachnoid blood depends on large-conductance Ca2+-activated K+ (BK) channels,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 21, pp. E1387–E1395, 2012.
  22. A. A. Leao, “Spreading depression of activity in the cerebral cortex,” Journal of Neurophysiology, vol. 7, pp. 359–390, 1944.
  23. C. Ayata, “Cortical spreading depression triggers migraine attack: pro,” Headache, vol. 50, no. 4, pp. 725–730, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Lauritzen, J. P. Dreier, M. Fabricius, J. A. Hartings, R. Graf, and A. J. Strong, “Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury,” Journal of Cerebral Blood Flow and Metabolism, vol. 31, no. 1, pp. 17–35, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. J. C. Chang, L. L. Shook, J. Biag et al., “Biphasic direct current shift, haemoglobin desaturation and neurovascular uncoupling in cortical spreading depression,” Brain, vol. 133, no. 4, pp. 996–1012, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Guiou, S. Sheth, M. Nemoto et al., “Cortical spreading depression produces long-term disruption of activity-related changes in cerebral blood volume and neurovascular coupling,” Journal of Biomedical Optics, vol. 10, no. 1, article 11004, 2005. View at Scopus
  27. H. Piilgaard and M. Lauritzen, “Persistent increase in oxygen consumption and impaired neurovascular coupling after spreading depression in rat neocortex,” Journal of Cerebral Blood Flow and Metabolism, vol. 29, no. 9, pp. 1517–1527, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Piilgaard, B. M. Witgen, P. Rasmussen, and M. Lauritzen, “Cyclosporine A, FK506, and NIM811 ameliorate prolonged CBF reduction and impaired neurovascular coupling after cortical spreading depression,” Journal of Cerebral Blood Flow and Metabolism, vol. 31, no. 7, pp. 1588–1598, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. J. P. Dreier, J. Woitzik, M. Fabricius et al., “Delayed ischaemic neurological deficits after subarachnoid haemorrhage are associated with clusters of spreading depolarizations,” Brain, vol. 129, no. 12, pp. 3224–3237, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. J. P. Dreier, “The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease,” Nature Medicine, vol. 17, no. 4, pp. 439–447, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. J. A. Hartings, M. R. Bullock, D. O. Okonkwo, et al., “Spreading depolarisations and outcome after traumatic brain injury: a prospective observational study,” Lancet Neurology, vol. 10, no. 12, pp. 1058–1064, 2011.
  32. O. W. Sakowitz, E. Santos, A. Nagel, et al., “Clusters of spreading depolarizations are associated with disturbed cerebral metabolism in patients with aneurysmal subarachnoid hemorrhage,” Stroke, vol. 44, no. 1, pp. 220–223, 2013.
  33. H. K. Shin, A. K. Dunn, P. B. Jones, D. A. Boas, M. A. Moskowitz, and C. Ayata, “Vasoconstrictive neurovascular coupling during focal ischemic depolarizations,” Journal of Cerebral Blood Flow and Metabolism, vol. 26, no. 8, pp. 1018–1030, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. J. P. Dreier, K. Körner, N. Ebert et al., “Nitric oxide scavenging by hemoglobin or nitric oxide synthase inhibition by N-nitro-L-arginine induces cortical spreading ischemia when K+ is increased in the subarachnoid space,” Journal of Cerebral Blood Flow and Metabolism, vol. 18, no. 9, pp. 978–990, 1998. View at Scopus
  35. G. C. Petzold, S. Haack, O. Von Bohlen Und Halbach et al., “Nitric oxide modulates spreading depolarization threshold in the human and rodent cortex,” Stroke, vol. 39, no. 4, pp. 1292–1299, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. J. P. Dreier, N. Ebert, J. Priller et al., “Products of hemolysis in the subarachnoid space inducing spreading ischemia in the cortex and focal necrosis in rats: a model for delayed ischemic neurological deficits after subarachnoid hemorrhage?” Journal of Neurosurgery, vol. 93, no. 4, pp. 658–666, 2000. View at Scopus
  37. G. C. Petzold, K. M. Einhäupl, U. Dirnagl, and J. P. Dreier, “Ischemia triggered by spreading neuronal activation is induced by endothelin-1 and hemoglobin in the subarachnoid space,” Annals of Neurology, vol. 54, no. 5, pp. 591–598, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. D. Jorks, S. Major, A. I. Oliveira-Ferreira, J. Kleeberg, and J. P. Dreier, “Endothelin-1(1–31) induces spreading depolarization in rats,” Acta Neurochirurgica, vol. 110, no. 1, pp. 111–117, 2011. View at Scopus
  39. J. Kleeberg, G. C. Petzold, S. Major, U. Dirnagl, and J. P. Dreier, “ET-1 induces cortical spreading depression via activation of the ET A receptor/phospholipase C pathway in vivo,” American Journal of Physiology, Heart and Circulatory Physiology, vol. 286, no. 4, pp. H1339–H1346, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. A. I. Oliveira-Ferreira, D. Milakara, M. Alam et al., “Experimental and preliminary clinical evidence of an ischemic zone with prolonged negative DC shifts surrounded by a normally perfused tissue belt with persistent electrocorticographic depression,” Journal of Cerebral Blood Flow and Metabolism, vol. 30, no. 8, pp. 1504–1519, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. C. Ayata, H. K. Shin, S. Salomone et al., “Pronounced hypoperfusion during spreading depression in mouse cortex,” Journal of Cerebral Blood Flow and Metabolism, vol. 24, no. 10, pp. 1172–1182, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. E. Farkas, R. Pratt, F. Sengpiel, and T. P. Obrenovitch, “Direct, live imaging of cortical spreading depression and anoxic depolarisation using a fluorescent, voltage-sensitive dye,” Journal of Cerebral Blood Flow and Metabolism, vol. 28, no. 2, pp. 251–262, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Lauritzen, “Cerebral blood flow in migraine and cortical spreading depression,” Acta Neurologica Scandinavica, vol. 113, pp. 1–40, 1987. View at Scopus
  44. M. Lauritzen, “Regional cerebral blood flow during cortical spreading depression in rat brain: increased reactive hyperperfusion in low-flow states,” Acta Neurologica Scandinavica, vol. 75, no. 1, pp. 1–8, 1987. View at Scopus
  45. R. D. Piper, G. A. Lambert, and J. W. Duckworth, “Cortical blood flow changes during spreading depression in cats,” American Journal of Physiology, Heart and Circulatory Physiology, vol. 261, no. 1, pp. H96–H102, 1991. View at Scopus
  46. J. Sonn and A. Mayevsky, “Effects of brain oxygenation on metabolic, hemodynamic, ionic and electrical responses to spreading depression in the rat,” Brain Research, vol. 882, no. 1-2, pp. 212–216, 2000. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Shinohara, B. Dollinger, and G. Brown, “Cerebral glucose utilization: local changes during and after recovery from spreading cortical depression,” Science, vol. 203, no. 4376, pp. 188–190, 1979. View at Scopus
  48. R. B. Duckrow, “A brief hypoperfusion precedes spreading depression if nitric oxide synthesis is inhibited,” Brain Research, vol. 618, no. 2, pp. 190–195, 1993. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Lauritzen and M. Fabricius, “Peal time laser-Doppler perfusion imaging of cortical spreading depression in rat neocortex,” NeuroReport, vol. 6, no. 9, pp. 1271–1273, 1995. View at Scopus
  50. T. Osada, M. Tomita, and N. Suzuki, “Spindle-shaped constriction and propagated dilation of arterioles during cortical spreading depression,” NeuroReport, vol. 17, no. 12, pp. 1365–1368, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. Y. Tomita, M. Tomita, I. Schiszler et al., “Repetitive concentric wave-ring spread of oligemia/hyperemia in the sensorimotor cortex accompanying K+-induced spreading depression in rats and cats,” Neuroscience Letters, vol. 322, no. 3, pp. 157–160, 2002. View at Scopus
  52. J. Chuquet, L. Hollender, and E. A. Nimchinsky, “High-resolution in vivo imaging of the neurovascular unit during spreading depression,” Journal of Neuroscience, vol. 27, no. 15, pp. 4036–4044, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. U. Hoffmann and C. Ayata, “Neurovascular coupling during spreading depolarizations,” Acta Neurochirurgica, vol. 115, pp. 161–165, 2013.
  54. J. P. Dreier, O. Windmüller, G. Petzold et al., “Ischemia triggered by red blood cell products in the subarachnoid space is inhibited by nimodipine administration or moderate volume expansion/hemodilution in rats,” Neurosurgery, vol. 51, no. 6, pp. 1457–1467, 2002. View at Publisher · View at Google Scholar · View at Scopus
  55. I. Sukhotinsky, M. A. Yaseen, S. Sakadžić et al., “Perfusion pressure-dependent recovery of cortical spreading depression is independent of tissue oxygenation over a wide physiologic range,” Journal of Cerebral Blood Flow and Metabolism, vol. 30, no. 6, pp. 1168–1177, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. A. J. Strong, P. J. Anderson, H. R. Watts et al., “Peri-infarct depolarizations lead to loss of perfusion in ischaemic gyrencephalic cerebral cortex,” Brain, vol. 130, no. 4, pp. 995–1008, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. J. Woitzik, J. P. Dreier, N. Hecht, et al., “Delayed cerebral ischemia and spreading depolarization in absence of angiographic vasospasm after subarachnoid hemorrhage,” Journal of Cerebral Blood Flow and Metabolism, vol. 32, no. 2, pp. 203–212, 2012.
  58. T. Kumagai, M. Walberer, H. Nakamura et al., “Distinct spatiotemporal patterns of spreading depolarizations during early infarct evolution: evidence from real-time imaging,” Journal of Cerebral Blood Flow and Metabolism, vol. 31, no. 2, pp. 580–592, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. J. Luckl, C. Zhou, T. Durduran, A. G. Yodh, and J. H. Greenberg, “Characterization of periinfarct flow transients with laser speckle and Doppler after middle cerebral artery occlusion in the rat,” Journal of Neuroscience Research, vol. 87, no. 5, pp. 1219–1229, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. H. Nakamura, A. J. Strong, C. Dohmen et al., “Spreading depolarizations cycle around and enlarge focal ischaemic brain lesions,” Brain, vol. 133, no. 7, pp. 1994–2006, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. I. Sukhotinsky, E. Dilekoz, M. A. Moskowitz, and C. Ayata, “Hypoxia and hypotension transform the blood flow response to cortical spreading depression from hyperemia into hypoperfusion in the rat,” Journal of Cerebral Blood Flow and Metabolism, vol. 28, no. 7, pp. 1369–1376, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. U. Hoffmann, I. Sukhotinsky, Y. B. Atalay, K. Eikermann-Haerter, and C. Ayata, “Increased glucose availability does not restore prolonged spreading depression durations in hypotensive rats without brain injury,” Experimental Neurology, vol. 238, no. 2, pp. 130–132, 2012.
  63. M. Fabricius, S. Fuhr, R. Bhatia et al., “Cortical spreading depression and peri-infarct depolarization in acutely injured human cerebral cortex,” Brain, vol. 129, no. 3, pp. 778–790, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. G. C. Petzold, O. Windmüller, S. Haack et al., “Increased extracellular K+ concentration reduces the efficacy of N-methyl-D-aspartate receptor antagonists to block spreading depression-like depolarizations and spreading ischemia,” Stroke, vol. 36, no. 6, pp. 1270–1277, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. J. P. Dreier, G. Petzold, K. Tille et al., “Ischaemia triggered by spreading neuronal activation is inhibited by vasodilators in rats,” Journal of Physiology, vol. 531, no. 2, pp. 515–526, 2001. View at Publisher · View at Google Scholar · View at Scopus
  66. G. B. Pike, “Quantitative functional MRI: concepts, issues and future challenges,” Neuroimage, vol. 62, no. 2, pp. 1234–1240, 2012.
  67. C. Iadecola and M. Nedergaard, “Glial regulation of the cerebral microvasculature,” Nature Neuroscience, vol. 10, no. 11, pp. 1369–1376, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. D. Attwell, A. M. Buchan, S. Charpak, M. Lauritzen, B. A. MacVicar, and E. A. Newman, “Glial and neuronal control of brain blood flow,” Nature, vol. 468, no. 7321, pp. 232–243, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. K. M. Dunn and M. T. Nelson, “Potassium channels and neurovascular coupling,” Circulation Journal, vol. 74, no. 4, pp. 608–616, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. C. Iadecola, “Neurovascular regulation in the normal brain and in Alzheimer's disease,” Nature Reviews Neuroscience, vol. 5, no. 5, pp. 347–360, 2004. View at Scopus
  71. C. M. Anderson and M. Nedergaard, “Astrocyte-mediated control of cerebral microcirculation,” Trends in Neurosciences, vol. 26, no. 7, pp. 340–344, 2003. View at Publisher · View at Google Scholar · View at Scopus
  72. J. A. Filosa, A. D. Bonev, and M. T. Nelson, “Calcium dynamics in cortical astrocytes and arterioles during neurovascular coupling,” Circulation Research, vol. 95, no. 10, pp. e73–e81, 2004. View at Scopus
  73. M. Simard, G. Arcuino, T. Takano, Q. S. Liu, and M. Nedergaard, “Signaling at the gliovascular interface,” Journal of Neuroscience, vol. 23, no. 27, pp. 9254–9262, 2003. View at Scopus
  74. S. V. Straub, A. D. Bonev, M. K. Wilkerson, and M. T. Nelson, “Dynamic inositol trisphosphate-mediated calcium signals within astrocytic endfeet underlie vasodilation of cerebral arterioles,” Journal of General Physiology, vol. 128, no. 6, pp. 659–669, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. S. V. Straub and M. T. Nelson, “Astrocytic calcium signaling: the information currency coupling neuronal activity to the cerebral microcirculation,” Trends in Cardiovascular Medicine, vol. 17, no. 6, pp. 183–190, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. B. Cauli and E. Hamel, “Revisiting the role of neurons in neurovascular coupling,” Frontiers in Neuroenergetics, vol. 2, article 9, 2010.
  77. E. Hamel, “Perivascular nerves and the regulation of cerebrovascular tone,” Journal of Applied Physiology, vol. 100, no. 3, pp. 1059–1064, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. C. Lecrux, X. Toussay, A. Kocharyan et al., “Pyramidal neurons are “neurogenic hubs” in the neurovascular coupling response to whisker stimulation,” Journal of Neuroscience, vol. 31, no. 27, pp. 9836–9847, 2011. View at Publisher · View at Google Scholar · View at Scopus
  79. P. G. Haydon and G. Carmignoto, “Astrocyte control of synaptic transmission and neurovascular coupling,” Physiological Reviews, vol. 86, no. 3, pp. 1009–1031, 2006. View at Publisher · View at Google Scholar · View at Scopus
  80. R. C. Koehler, R. J. Roman, and D. R. Harder, “Astrocytes and the regulation of cerebral blood flow,” Trends in Neurosciences, vol. 32, no. 3, pp. 160–169, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. M. Zonta, M. C. Angulo, S. Gobbo et al., “Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation,” Nature Neuroscience, vol. 6, no. 1, pp. 43–50, 2003. View at Publisher · View at Google Scholar · View at Scopus
  82. D. L. Price, J. W. Ludwig, H. Mi, T. L. Schwarz, and M. H. Ellisman, “Distribution of rSlo Ca2+-activated K+ channels in rat astrocyte perivascular endfeet,” Brain Research, vol. 956, no. 2, pp. 183–193, 2002. View at Publisher · View at Google Scholar · View at Scopus
  83. J. A. Filosa, A. D. Bonev, S. V. Straub et al., “Local potassium signaling couples neuronal activity to vasodilation in the brain,” Nature Neuroscience, vol. 9, no. 11, pp. 1397–1403, 2006. View at Publisher · View at Google Scholar · View at Scopus
  84. H. Girouard, A. D. Bonev, R. M. Hannah, A. Meredith, R. W. Aldrich, and M. T. Nelson, “Astrocytic endfoot Ca2+ and BK channels determine both arteriolar dilation and constriction,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 8, pp. 3811–3816, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. O. B. Paulson and E. A. Newman, “Does the release of potassium from astrocyte endfeet regulate cerebral blood flow?” Science, vol. 237, no. 4817, pp. 896–898, 1987. View at Scopus
  86. G. R. J. Gordon, H. B. Choi, R. L. Rungta, G. C. R. Ellis-Davies, and B. A. MacVicar, “Brain metabolism dictates the polarity of astrocyte control over arterioles,” Nature, vol. 456, no. 7223, pp. 745–750, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. M. R. Metea and E. A. Newman, “Glial cells dilate and constrict blood vessels: a mechanism of neurovascular coupling,” Journal of Neuroscience, vol. 26, no. 11, pp. 2862–2870, 2006. View at Publisher · View at Google Scholar · View at Scopus
  88. S. J. Mulligan and B. A. MacVicar, “Calcium transients in astrocyte endfeet cause cerebrovascular constrictions,” Nature, vol. 431, no. 7005, pp. 195–199, 2004. View at Publisher · View at Google Scholar · View at Scopus
  89. J. J. Zaritsky, D. M. Eckman, G. C. Wellman, M. T. Nelson, and T. L. Schwarz, “Targeted disruption of Kir2.1 and Kir2.2 genes reveals the essential role of the inwardly rectifying K+ current in K+-mediated vasodilation,” Circulation Research, vol. 87, no. 2, pp. 160–166, 2000. View at Scopus
  90. H. R. Parri, T. M. Gould, and V. Crunelli, “Spontaneous astrocytic Ca2+ oscillations in situ drive NMDAR-mediated neuronal excitation,” Nature Neuroscience, vol. 4, no. 8, pp. 803–812, 2001. View at Publisher · View at Google Scholar · View at Scopus
  91. W. J. Nett, S. H. Oloff, and K. D. Mccarthy, “Hippocampal astrocytes in situ exhibit calcium oscillations that occur independent of neuronal activity,” Journal of Neurophysiology, vol. 87, no. 1, pp. 528–537, 2002. View at Scopus
  92. F. Aguado, J. F. Espinosa-Parrilla, M. A. Carmona, and E. Soriano, “Neuronal activity regulates correlated network properties of spontaneous calcium transients in astrocytes in situ,” Journal of Neuroscience, vol. 22, no. 21, pp. 9430–9444, 2002. View at Scopus
  93. H. Hirase, L. Qian, P. Barthó, and G. Buzsáki, “Calcium dynamics of cortical astrocytic networks in vivo,” PLoS Biology, vol. 2, no. 4, article E96, 2004. View at Publisher · View at Google Scholar · View at Scopus
  94. T. Takano, X. Han, R. Deane, B. Zlokovic, and M. Nedergaard, “Two-photon imaging of astrocytic Ca2+ signaling and the microvasculature in experimental mice models of Alzheimer's disease,” Annals of the New York Academy of Sciences, vol. 1097, pp. 40–50, 2007. View at Publisher · View at Google Scholar · View at Scopus
  95. I. Harukuni and A. Bhardwaj, “Mechanisms of brain injury after global cerebral ischemia,” Neurologic Clinics, vol. 24, no. 1, pp. 1–21, 2006. View at Publisher · View at Google Scholar · View at Scopus
  96. C. Zhou, T. Shimazu, T. Durduran et al., “Acute functional recovery of cerebral blood flow after forebrain ischemia in rat,” Journal of Cerebral Blood Flow and Metabolism, vol. 28, no. 7, pp. 1275–1284, 2008. View at Publisher · View at Google Scholar · View at Scopus
  97. W. B. Baker, Z. Sun, T. Hiraki, et al., “Neurovascular coupling varies with level of global cerebral ischemia in a rat model,” Journal of Cerebral Blood Flow and Metabolism, vol. 33, no. 1, pp. 97–105, 2013.
  98. W. D. Dietrich, M. D. Ginsberg, and R. Busto, “Effect of transient cerebral ischemia on metabolic activation of a somatosensory circuit,” Journal of Cerebral Blood Flow and Metabolism, vol. 6, no. 4, pp. 405–413, 1986. View at Scopus
  99. M. J. Cipolla, N. Lessov, E. S. Hammer, and A. B. Curry, “Threshold duration of ischemia for myogenic tone in middle cerebral arteries: effect on vascular smooth muscle actin,” Stroke, vol. 32, no. 7, pp. 1658–1664, 2001. View at Scopus
  100. H. Girouard and C. Iadecola, “Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease,” Journal of Applied Physiology, vol. 100, no. 1, pp. 328–335, 2006. View at Publisher · View at Google Scholar · View at Scopus
  101. O. Butenko, D. Dzamba, J. Benesova, et al., “The increased activity of TRPV4 channel in the astrocytes of the adult rat hippocampus after cerebral hypoxia/ischemia,” PLoS ONE, vol. 7, no. 6, Article ID e39959, 2012.
  102. H. Pivonkova, J. Benesova, O. Butenko, A. Chvatal, and M. Anderova, “Impact of global cerebral ischemia on K+ channel expression and membrane properties of glial cells in the rat hippocampus,” Neurochemistry International, vol. 57, no. 7, pp. 783–794, 2010. View at Publisher · View at Google Scholar · View at Scopus
  103. S. Nishizawa and I. Laher, “Signaling mechanisms in cerebral vasospasm,” Trends in Cardiovascular Medicine, vol. 15, no. 1, pp. 24–34, 2005. View at Publisher · View at Google Scholar · View at Scopus
  104. M. Ishiguro, T. L. Wellman, A. Honda, S. R. Russell, B. I. Tranmer, and G. C. Wellman, “Emergence of a R-type Ca2+ channel (Cav 2.3) contributes to cerebral artery constriction after subarachnoid hemorrhage,” Circulation Research, vol. 96, no. 4, pp. 419–426, 2005. View at Publisher · View at Google Scholar · View at Scopus
  105. G. C. Wellman, “Ion channels and calcium signaling in cerebral arteries following subarachnoid hemorrhage,” Neurological Research, vol. 28, no. 7, pp. 690–702, 2006. View at Publisher · View at Google Scholar · View at Scopus