About this Journal Submit a Manuscript Table of Contents
The Scientific World Journal
Volume 2013 (2013), Article ID 219815, 33 pages
http://dx.doi.org/10.1155/2013/219815
Review Article

Five Pistacia species (P. vera, P. atlantica, P. terebinthus, P. khinjuk, and P. lentiscus): A Review of Their Traditional Uses, Phytochemistry, and Pharmacology

1Department of Traditional Pharmacy, Faculty of Traditional Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran
2Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran

Received 1 August 2013; Accepted 21 August 2013

Academic Editors: U. Feller and T. Hatano

Copyright © 2013 Mahbubeh Bozorgi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Pistacia, a genus of flowering plants from the family Anacardiaceae, contains about twenty species, among them five are more popular including P. vera, P. atlantica, P. terebinthus, P. khinjuk, and P. lentiscus. Different parts of these species have been used in traditional medicine for various purposes like tonic, aphrodisiac, antiseptic, antihypertensive and management of dental, gastrointestinal, liver, urinary tract, and respiratory tract disorders. Scientific findings also revealed the wide pharmacological activities from various parts of these species, such as antioxidant, antimicrobial, antiviral, anticholinesterase, anti-inflammatory, antinociceptive, antidiabetic, antitumor, antihyperlipidemic, antiatherosclerotic, and hepatoprotective activities and also their beneficial effects in gastrointestinal disorders. Various types of phytochemical constituents like terpenoids, phenolic compounds, fatty acids, and sterols have also been isolated and identified from different parts of Pistacia species. The present review summarizes comprehensive information concerning ethnomedicinal uses, phytochemistry, and pharmacological activities of the five mentioned Pistacia species.

1. Introduction

The genus Pistacia belongs to the Anacardiaceae, a cosmopolitan family that comprise about 70 genera and over 600 species. The species of the genus Pistacia are evergreen or deciduous resin-bearing shrubs and trees which are characterized as xerophytic trees and growing to 8–10 m tall. Pistacia lentiscus L., P. atlantica Desf., P. terebinthus L., P. vera L., and P. khinjuk Stocks. are distributed from the Mediterranean basin to central Asia [1, 2]. Three Pistacia species naturally occur in Iran: P. vera L., P. khinjuk Stocks., and P. atlantica Desf.; P. atlantica has three subspecies or varieties which have been described as cabulica, kurdica, and mutica [3]. P. vera is the only species of the genus cultivated commercially, and the rest of the species are mostly used as rootstocks for P. vera [1, 2].

Different parts of Pistacia species have been investigated for various pharmacological activities. Most of the papers are devoted to the resin of P. lentiscus that is known as mastic. In addition to their therapeutic effects, Pistacia species are used in food industry, for example, consumption of pistachio (P. vera) nut as food additive [4], P. terebinthus fruit as snack food or in making coffee-like drink [5, 6], and the anthocyanin composition of P. lentiscus fruit as food colorants [7].

Chemical studies on Pistacia genus have led to discovering diverse secondary metabolites in addition to high level of vitamins and minerals.

Our review presents a comprehensive report on phytochemical aspects, pharmacological activities, and toxicity of the genus Pistacia by focusing on the data reported since the year 2000 via papers on databases including PubMed, Scopus, Google Scholar, and Web of Science.

2. Traditional Uses

Traditional uses, plant part used, and pharmacological activities of Pistacia lentiscus, P. atlantica, P. terebinthus, P. vera, and P. khinjuk from different regions are listed in Table 1.

tab1
Table 1: Ethnomedicinal uses of selected Pistacia species.

Different parts of Pistacia species including resin, leave, fruit, and aerial part have been traditionally used for a wide range of purposes. Among them, P. lentiscus is the most commonly used in different regions and resin of that has been utilized for as long as 5000 years. Resin of P. lentiscus has been used for variety of gastric ailments in the Mediterranean and Middle East countries for the last 3000 years [8]. It was used in ancient Egypt as incense; it has also been used as a preservative and breath sweetener [4] Most of the traditional uses reports for resin of P. atlantica are from Iran and have been used for the treatment of digestive, hepatic, and kidney diseases [9]. Fruit of P. vera (pistachio) is used all over the world. Records of the consumption of pistachio as a food date to 7000 BC [4]. Pistachio is cultivated in the Middle East, United States, and Mediterranean countries. Iran is one of the biggest producers and exporters of pistachio nuts [10]. In traditional Iranian medicine (TIM), different parts of P. vera, P. atlantica, P. khinjuk P. terebinthus, and P. lentiscus have been used for a long time as useful remedies for different diseases, for example, the fruit kernel of P. vera as a cardiac, stomach, hepatic, and brain tonic; the fruits of P. atlantica, P. khinjuk, and P. terebinthus for their aphrodisiac activity and treatment of liver, kidney, heart, and respiratory system disorders, and the gum resin of P. lentiscus, P. atlantica, P. khinjuk, and P. terebinthus for their wound healing activity, and treatment of brain and gastrointestinal disorders [9, 11].

3. Phytochemical Studies

Various compounds from different phytochemical groups were identified in Pistacia species. These are summarized below and also in Table 2 based on the structure of finding components.

tab2
Table 2: Chemical compounds isolated from selected Pistacia species.
3.1. Terpenoids
3.1.1. Monoterpenoids, Sesquiterpenoids, and Volatile Oil

Essential oil is one of the main components reported from different parts of Pistacia species including leaves, resin, ripe and unripe fruits, galls, leaf-buds, twigs, and flowers. Analysis of essential oils is mostly performed by means of gas-chromatography (GC) based techniques. There are many qualitative and quantitative variations between the content of essential oils. These variations are related to several parameters like plant species and part, sex of cultivars, harvesting time, geographical origin, and climatic conditions [12, 13]. Hydrocarbon and oxygenated monoterpens are the major chemical constituents in essential oil and among hydrocarbon monoterpens, α-pinene (1) has been reported as the main compound of some samples like P. vera [12, 14, 15], P. terebinthus [1618], P. lentiscus [1924], and P. atlantica [2527]. In addition to α-pinene, other major components isolated from different parts of Pistacia species are as follows: limonene (2), α-terpinolene, and ocimene (3,4) from fruits and leaves of P. vera [28]; (E)-β-Ocimene (5) and limonene in fruits [18, 28, 29]; (E)-β-Ocimene and terpinen-4-ol (6) in leaves and p-cymen, (7) in young shoots of P. terebinthus [2830]; bornyl acetate (8), terpinen-4-ol, sabinene (9), and myrcene (10) in fruits, terpinen-4-ol, myrcene, p-mentha-1 (7),8 diene (11), and ocimene from leaves [27, 28, 31], sabinene and p-mentha-1 (7),8 diene in leaf buds, and -carene (12) in unripe galls of P. atlantica [31, 32]. Monoterpens are also detected in mastic water which was separated from the mastic oil during steam distillation. Verbenone (13), α-terpineol (14), linalool (15), and trans-pinocarveol (16) are the main constituents of mastic water [33]. β-pinene (17) in oleoresin, β-myrcene and sabinene in fruits [28, 30, 34], terpinen-4-ol in aerial parts [22], and limonene, myrcene, sabinene, and teroinen-4-ol in leaves of P. lentiscus were determined as the main composition [28, 30, 35, 36].

Some of the other monoterpenes identified as effective antibacterial components of these essential oils are camphene (18), limonene, and carvacrol (19) from P. vera resin [12].

Sesquiterpenes isolated in lower amount compared with monoterpenes. Germacrene-D (20) and β-caryophyllene (21) were identified in P. lentiscus and P. terebinthus leaves with higher concentration in comparison with other sesquiterpenes [28]. Spathulenol (22), an azulenic sesquiterpene alcohol, is the predominant component of leaves of P. atlantica and P. khinjuk [37, 38]. Congiu et. al. [34] recovered Caryophyllene with the highest amount from P. lentiscus leaves by means of supercritical CO2 extraction. Germacrene-D in P. terebinthus flowers, β-caryophyllene in P. lentiscus galls, and Longifolene (23) in aerial parts of P. lentiscus are dominant [24, 29, 39].

3.1.2. Diterpenoids

Trace amounts of Diterpenoids were isolated from the essential oil of these species. Abietadiene (24) and abietatriene (25) were detected in essential oil of P. vera resin [12].

3.1.3. Triterpenoids

Resin of these species has been characterized by penta and tetracyclic triterpenes. Triterpenes such as masticadienonic acid (26), masticadienolic acid (27), morolic acid (28), oleanolic acid (29), ursonic acid (30) and their derivatives have been detected in acidic fractions of P. lentiscus, P. terebinthus, and P. atlantica resins [4042]. Several triterpenoid compounds were isolated from neutral fraction of P. lentiscus and P. terebinthus resins like tirucallol (31), dammaradienone (32), β-Amyrin (33), lupeol (34), oleanolic aldehyde, and 28-norolean-12-en-3-one. Quantitative and qualitative varieties in chemical composition of resins according to the method of collection were reported [40, 41].

Anti-inflammatory properties have been reported from masticadienolic acid, masticadienonic acid, and morolic acid isolated from P. terebinthus [43]. Among triterpenes isolated from the resin of three sub-species of P. atlantica (kurdica, cabulica and mutica), 3-O-acetyl-3-epiisomasticadienolic acid (35) has been identified as the most effective antimicrobial agent [42].

3.2. Phenolic Compounds

Gallic acid (36), catechin (37), epicatechin (38), and gallic acid methyl ester were identified in P. vera seed and skin, leaves of P. lentiscus and leaves and galls of P. atlantica [4446]. Bhouri et al. [47] demonstrated that digallic acid (39) from fruits of P. lentiscus has anti-mutagenic properties. Monounsaturated, diunsaturated, and saturated cardanols have been detected in P. vera kernel. 3-(8-Pentadecenyl)-phenol (40) was the dominating cardanol in P. vera [48]. Trans and cis isomers of phytoalexin, resveratrol (3,5,4′-trihydroxystilbene) (41-42), and trans-resveratrol-3-O-β-glucoside (trans-piceid) were quantified in P. vera kernel [4951]. P. lentiscus leaf is a rich source of polyphenol compounds (7/5% of leaf dry weight) especially galloyl derivatives like mono, di, and tri-O-galloyl quinic acid (43) and monogalloyl glucose (44) [45].

1,2,3,4,6-Pentagalloyl glucose (45) and gallic acid from fruits of P. lentiscus were introduced as antioxidant and anti-mutagenic compounds [52].

Flavonoid compounds have been detected in different parts of these species. Naringenin (46), eriodyctyol (47), daizein (48), genistein (49), quercetin (50), kaempferol (51), apigenin (52), and luteolin (53) were isolated from P. vera fruit, and quercetin-3-O-rutinoside (54) is the main constituent of seed [44]. Decrease in flavonoid content of P. vera has been reported during the fruit ripening [51]. In addition to some known flavonoids isolated from P. terebinthus and P. atlantica fruits, 6′-hydroxyhypolaetin 3′-methyl ether (55) has been identified in fruits of P. terebinthus [46, 53]. Flavonoids were also isolated from aerial parts of P. atlantica and P. lentiscus, and quercetin-3-glucoside (56) was reported as the most abundant one [54]. 3-Methoxycarpachromene (57), a flavone with antiplasmodial activity, was isolated from aerial parts of P. atlantica [55].

Myricetin-3-glucoside (58), myricetin-3-galactoside (59), and myricetin-3-rutinoside (60) are the major flavonoid glycosides from P. khinjuk [54]. Myricetin derivatives also were determined as 20% of the total polyphenol amount of P. lentiscus leaves [45].

Anthocyanins have been reported from some Pistacia species. Cyanidin-3-O-glucoside (61), cyanidin-3-galactoside (62), and quercetin-3-O-rutinoside are the main anthocyanins of P. vera fruit [44, 56, 57]. Cyanidin-3-O-glucoside and delphinidin-3-O-glucoside (63) have been detected in P. lentiscus berries and leaves [7, 45].

3.3. Fatty Acids and Sterols

Pistacia species have oleaginous fruits considered by several researchers. The oil content in P. vera kernel and seed is about 50–60% [58, 59] and in ripe fruits of P. lentiscus, P. terebinthus, and P. atlantica is 32.8–45% [6063]. The main fatty acid in seed and kernel of P. vera is oleic acid [58, 64, 65]. Oleic acid has been also determined as the most abundant fatty acid in oil of P. atlantica and P. terebinthus fruits [62, 66, 67]. Increase of oleic acid and decrease of linoleic acid have been recorded during ripening of P. lentiscus fruits [60]. Other fatty acids identified in these species are linolenic, palmitic, palmitoleic, stearic, myristic, eicosanoic, behenic, lignoceric, arachidonic, pentadecanoic, hexadecanoic, octadecanoic, and margaric acid [58, 66, 68].

The most abundant sterol reported in fruits of P. vera, P. atlantica, P. lentiscus, and P. terebinthus is β-sitosterol fallowed by campesterol, -avenasterol, stigmasterol, brassicasterol, and cholesterol [59, 60, 69, 70].

The oil from fruits of P. atlantica, P. lentiscus, and P. terebinthus, in addition to its desirable odor and taste, has been recommended as a new source for production of vegetable oils concerning the high amount of mono-unsaturated and omega-3 fatty acids like oleic acid and linolenic acid and high quantity of phytosterols like β-sitosterol [60, 68].

3.4. Miscellaneous

Chlorophylls a and b and lutein are the major colored components of P. vera nuts [56]. Pheophytin, β-carotene, neoxanthin, luteoxanthin, and violaxanthin were also determined in different samples of P. vera nuts [71]. α-tocopherol was determined in leaves of P. lentiscus, P. lentiscus var. chia, and P. terebithus [72]. Tocopherols and tocotrienols are the most abundant constituents of unsaponifiable matter of P. atlantica hull oil [73]. Different isomers of tocopherol, tocotrienol, and plastochromanol-8 have been identified in seed oil of P. terebinthus [70]. Evaluating the nutritional composition of P. terebinthus fruits illustrates the richness of this fruit in protein, oil, minerals, and fiber [62, 68].

4. Pharmacological Aspects

Different pharmacological activities of five mentioned Pistacia species have been described in detail in Table 3.

tab3
Table 3: Pharmacological activities of selected Pistacia species.
4.1. Antioxidant Activity

Different parts and constituents from P. lentiscus have been shown in vitro radical scavenging properties [23, 47, 52, 7476]. Pistacia lentiscus var. chia and P. terebinthus var. chia resins were effective in protecting human LDL from oxidation in vitro [77]. P. atlantica leaf and fruit have shown antioxidant activity similar to or significantly higher than those of standard antioxidant compounds in different in vitro antioxidant assays [7880]. However, the essential oil from P. atlantica leaf showed weak antioxidant activity in DPPH test compared to synthetic antioxidants [32]. P. vera fruit revealed significant antioxidant activity similar to the synthetic antioxidant [81]. Lipophilic extract from P. vera nuts showed lower antioxidant potential that than of hydrophilic extract [82]. One survey showed P. vera skins had a better antioxidant activity compared to seeds by means of four different assays because of higher content of antioxidant phenolic compounds in skins [44]. Antioxidant activity has been also reported from other parts of P. vera [83].

In one study, the extract from P. terebinthus leaf had nearly 12-fold higher antioxidant capacity than those of BHA and ascorbic acid [84]. P. terebinthus fruits showed noticeable metal-chelation properties as compared to EDTA and high radical scavenging activity similar to the standards. Antioxidant activity of the fruits may be elevated by roasting process [85].

4.2. Antimutagenic Activity

Essential oil and different extracts from P. lentiscus leaves indicated significant inhibitory effect on mutagenicity in vitro [86, 87]. Gallic acid, digallic acid, and 1,2,3,4,6-pentagalloylglucose, polyphenols isolated from the fruits of P. lentiscus, induced an inhibitory activity against mutagenicity and genotoxicity in in vitro assays [47, 52].

4.3. Antimicrobial and Antiviral Activities

Pistacia species have demonstrated significant antibacterial activity against various Gram positive and Gram negative bacteria as shown in Table 3. Antimicrobial activity of Pistacia lentiscus resin, the essential oil and gum from P. atlantica var. kurdica and its major constituent α-pinene and P. vera gum against Helicobacter pylori were recorded [15, 33]. A study indicated that antibacterial activity of P. lentiscus gum oil can be attributed to combination of several components rather than to one particular compound. Verbenone, R-terpineol, and linalool showed high antibacterial activity against Escherichia coli, Staphylococcus aureus, and Bacillus subtilis which is comparable to that of mastic oil itself [19]. P. lentiscus gum revealed selective antibacterial activity against Porphyromonas gingivalis and Prevotella melaninogenica and had antiplaque activity on teeth by inhibiting bacterial growth in saliva [76].

Significant antifungal activity was seen from essential oil of P. lentiscus leaf and gum, different extracts of P. khinjuk leaf, and essential oil of P. vera gum [15, 19, 38, 88]. Evaluating the effect of P. vera gum essential oil on growth of 13 bacteria and 3 yeasts demonstrated inhibitory effect on all of them except Bacillus cereus, Pseudomonas aeruginosa, and Klebsiella pneumonia and more effective yeasticide than nystatin. Carvacrol was found to be the most effective constituent [12, 15]. Lipophylic extracts from different parts of P. vera showed a little antibacterial activity and noticeable antifungal one against C. albicans and C. parapsilosis. Kernel and seed extracts showed significant antiviral activity [89].

Some active constituents of essential oil from the aerial parts of P. khinjuk responsible for its antibacterial and antifungal activity are α-pinene, β-pinene, myrcene, beta-caryophyllene, Germacrene B, and Spathulenol [38].

Organic fraction of mastic water obtained during the steam distillation of resin from Pistacia lentiscus var. chia indicated acceptable antifungal activity but moderate antibacterial effect. Among some of its major compounds, (±)-linalool and α-terpineol had the highest antimicrobial effect [33].

Essential oil from leaf and gum of P. atlantica showed acceptable antibacterial and antifungal activities [9092]. However, leaf ethanolic extract had no distinct antimicrobial activity [88].

A remarkable inhibitory activity of different extracts and essential oil from P. lentiscus leaves was observed against Salmonella typhimurium; additionally, essential oil showed significant inhibitory effects against S. enteritidis and Staphylococcus aureus [86, 87].

As reported by Adams et al. [55], the leaves and twigs of P. atlantica and its active substance 3-methoxycarpachromene showed antiprotozoal activity against Plasmodium falciparum. P. atlantica var. kurdica gum controlled cutaneous leishmaniasis in mice infected with Leishmania major [93]. Extract from P. vera branch had significant inhibitory activity against Leishmania donovani and leaf extract inhibited Plasmodium falciparum without cytotoxicity on mammalian cells [94].

4.4. Anti-Inflammatory and Antinociceptive Activity

Anti-inflammatory and antinociceptive activity of five mentioned Pistacia species have been shown in Table 3.

P. terebinthus gall showed anti-inflammatory activity in different in vivo models of acute and chronic inflammation [95]. Masticadienonic acid (26), masticadienolic acid (27), and morolic acid (28), three triterpene isolated from P. terebinthus gall, seem to be responsible for its anti-inflammatory activity [43]. Additionally, oleanonic acid (29) from the galls of P. terebinthus, reduced the production of leukotriene B4 from rat peritoneal leukocytes and showed antiedematous activity in mice [96]. Oleoresin and leaf extract from P. vera showed significant anti-inflammatory and antinociceptive activity [97].

Extract of the resin of P. lentiscus var. Chia and its isolated phytosterol tirucallol (31) showed anti-inflammatory activity on human aortic endothelial cells and had significant inhibitory activity on adhesion molecules expression in TNF-α-stimulated human aortic endothelial cells [98]. It was proposed that the anti-inflammatory effect of P. lentiscus var. chia gum may be related to inhibition of protein kinase C which leads to decrease in superoxide and H2O2 production by NADPH oxidase [99].

4.5. Effects on Gastrointestinal Disorders

One of the most important traditional uses of gums from Pistacia species is for management of gastrointestinal disorders. Moreover, there are several scientific studies that confirm this property [100102]. Resin of P. lentiscus significantly reduced the intensity of gastric mucosal damage induced by pyloric ligation, aspirin, phenylbutazone, reserpine, and restraint with cold stress via its antisecretory and cytoprotective activities [103]. In one double-blind placebo controlled trial, P. lentiscus gum improved the feeling of symptoms significantly in patients with functional dyspepsia [104]. Moreover, Pistacia species exerted significant antibacterial activity on Helicobacter pylori [15, 33]. Supplementation with P. lentiscus oil in experimental model of colitis delayed the onset and progression of acute colitis and led to decrease weight loss caused by the disease [105]. A polyherbal formula that contains P. lentiscus gum caused significant decrease in colonic damage and biochemical markers related to pathophysiology of IBS in rat model of colitis [106]. Adminstration of P. lentiscus var. chia resin to patients with established mild to moderate active crohn’s disease (CD) for 4 weeks caused significant reduction in CD activity index and plasma inflammatory mediators without any side effects and also as an immunomodulator resulted in significantly reduction in tumor necrosis factor-alpha (TNF-α) and enhanced macrophage migration inhibitory factor in these patients [107, 108].

4.6. Antidiabetic Activity

Aqueous leaf extract from P. atlantica showed significant inhibitory effect on α-amylase and α-glucosidase in vitro [109, 110]. It demonstrated significant acute postprandial antihyperglycemic activity comparable to metformin and glipizide in starch-fed rats. It also improved glucose intolerance [110]. However, another study on this extract did not show significant hypoglycemic activity when tested in normoglycemic and streptozocin-induced hyperglycemic rats [109]. Administration of P. lentiscus var. chia gum to human subjects for 12 months caused significantly decrease in serum glucose level among male subjects. Serum glucose in women was not affected [111].

4.7. Antitumor Activity

Among mentioned species of Pistacia, P. lentiscus is the most investigated for antitumor activity (Table 3). P. lentiscus var. chia gum inhibited proliferation and induced apoptosis of human colorectal tumor cells in vitro [112]. The resin exerted the most cytotoxic effect against promyelocytic leukemia among 13 human cell types and also inhibited the natural apoptosis of oral polymorphonuclear leukocytes [76]. The gum demonstrated anticancer activity via delaying the growth of colorectal tumors developed from human colon cancer cells xenografted into mice [8]. It also increased maspin (a mammary serine protease inhibitor with tumor suppressive activity for prostate cancers) expression in responsive prostate cancer cells and inhibited cell proliferation and blocked the cell cycle progression [113, 114]. Essential oil of P. lentiscus demonstrated significant inhibition on tumor growth in immunocompetent mice without signs of toxicity, related to apoptosis induction, reduced neovascularization, and inhibiting chemokine expression [115]. In addition, it had antiproliferative and proapoptotic effect on human leukemia cells and inhibited the release of vascular endothelial growth factor from these cells [116]. Despite many reports on antitumor activities of P. lentiscus, one in vivo study showed that the high dose of P. lentiscus gum promoted the preneoplastic lesions development in rat liver with increasing liver relative weight which proposed that desirable anticarcinogenic effects of mastic could be obtained at relatively low doses [117]. In one recent study, the current data on the anticancer activities of gum, oil, and extracts of P. lentiscus L. and its major constituent, have been reviewed comprehensively with special attention to the probable anticancer mechanisms [118].

The fruit extract of P. atlantica sub. kurdica showed growth inhibition in human colon carcinoma cells similar to Doxorubicin [119]. P. vera oleoresin demonstrated moderate cytotoxic effect against breast cancer cell line, hepatocellular carcinoma cell line, cervix cancer cell line, and normal melanocytes [120].

4.8. Effects on Liver and Serum Biochemical Parameters

P. lentiscus leaf demonstrated significant hepatoprotective activity against carbon tetrachloride induced hepatotoxicity in rats by reducing the level of bilirubin and activity of liver enzymes [121]. However, another study reported hepatic fibrosis, mild cholestasis, and depletion of reduced glutathione by long-term administration of aqueous leaf extract in healthy rats [122]. Administration of P. lentiscus var. chia gum for 18 months in healthy volunteers caused reduction in liver enzymes and exerted hypolipidemic effect [111]. Extracts from P. vera fruits have shown beneficial effects on HDL and LDL level in rabbit model of atherosclerosis [123]. Positive changes in lipid profile were recorded after three-week use of P. vera nuts in patients with moderate hypercholesterolemia. The decrease in triglyceride and LDL levels was not significant [124]. P. terebinthus fruit demonstrated hypolipidemic effect in hypercholesterolemic rabbits [125].

4.9. Effects on Atherosclerosis

More over than the antihyperlipidemic activity that described above, Pistacia species exerts their antiathesclerotic effects by direct activity on atherosclerotic lesions moreover than their antihyperlipidemic activity. Both methanolic and cyclohexane extracts from P. vera fruits have shown beneficial effects on HDL, LDL, and aortic intimal thickness in rabbit model of atherosclerosis. The methanolic extract additionally showed an antioxidant activity and remarkable decrease in aortic surface lesions [123]. P. terebinthus fruits inhibited the development of the atherosclerotic lesions in the thoracic artery [125]. P. lentiscus resin that downregulated CD36 mRNA expression (as the oxLDL receptor in macrophages that play a pivotal role in atherosclerotic foam cell formation) resulted in antiatherogenic effects [126].

4.10. Anticholinesterase Activity

Aqueous extracts from P. atlantica and P. lentiscus leaves showed strong acetylcholinesterase (AChE) inhibition [13]; additionally, both the methanol and ethyl acetate extracts of P. atlantica leaf showed relatively weak AchE inhibitory activity [127]. However, one study showed that ethyl acetate and methanol extracts of various commercially terebinth coffee brands (an oily brown-coloured powder produced from the dried and roasted fruits of P. terebinthus) and the unprocessed fruits of P. terebinthus did not have inhibitory activity against AChE and tyrosinase, while they selectively inhibited butyrylcholinesterase (BChE) at moderate levels [85].

5. Conclusion

In traditional Iranian medicine textbooks and papers, five species of Pistacia genus including P. vera, P. lentiscus, P. terebinthus, P. atlantica, and P. khinjuk had been introduced for treating the wide range of ailments. These species until now have been utilized in Iran by people for different nutritional and medicinal proposes. This review considered findings about phytochemical and pharmacological properties of these five species and presents comprehensive analysis of papers published since the year 2000. Ethnopharmacological data about these species may help us to know that many pharmacological aspects proposed nowadays for these species have been derived from traditional uses like antiseptic and antimicrobial, anti-inflammatory and anti-nociceptive, antihepatotoxic, and anticancer activities and their beneficial effects in gastrointestinal disorders. Furthermore, there are several pharmacological activities discussed in traditional medicine such as diuretic, lithontripic, anti-tussive, antirheumatic, antiasthmatic, antihypertensive, and aphrodisiac activities which are not supported by any current scientific documents, and so, they could be considered for investigation by researchers.

Phytochemical studies provided evidence for traditional applications of these species. With respect to phytochemical assays, triterpenes found in the resin and monoterpens are the most abundant composition of the essential oil from different parts of these species. Essential oil constituents might be valuable chemotaxonomic marker to ascertain different Pistacia chemotypes. Considering the therapeutic effect of isolated components, it can be concluded that terpenoids including mono, di-, and triterpenoids are associated with anti-inflammatory and antimicrobial effects. High amount of natural phenols and flavonoids is related to potent antioxidant and anticancer activities.

Review on current researches about the genus Pistacia L. highlighting pharmacological studies on crude plant parts, extracts, and some pure metabolites has provided scientific evidence for traditional uses and has revealed this genus to be a valuable source for medicinally important molecules.

So many studies were carried out on antioxidant activity of this genus considering their flavonoids, anthocyanins, and other phenolic compounds as preventive factors against cancer and cardiovascular diseases. P. lentiscus is the most studied species for antioxidant effects followed by P. atlantica, P. vera, P. terebinthus and P. khinjuk.

Most of the studies showed antimicrobial activity of these species especially P. lentiscus on a wide range of microorganisms including Gram-positive and -negative, aerobic and aerobic bacteria, viruses and fungi. The findings indicated that α-pinene, verbenone, R-terpineol, linalool, carvacrol and flavones are major compounds related to antibacrial activity.

Abbreviations

ABTS:2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulphonic  acid)
ALP:Alkalin  ephosphatase
ALT:Alanine  aminotransferase
AST:Aspartate  aminotransferase
B(a)p:Benzo(a)pyrene
BHA:Butylated  hydroxyanisole
BHT:Butylated  hydroxytoluene
DMPD:N,N-dimethyl-p-phenylendiamine
DPPH:2,2-Diphenyl-1-picrylhydrazyl
EC50:Half  maximal  effective  concentration
EDTA:Ethylenediaminetetraacetic  acid
EPP:Ethyl  phenylpropiolate
FRAP:Ferric  reducing  antioxidant  power
Gamma-GT:Gamma-glytamyl  transpeptidase
IC50:The  half  maximal  inhibitory  concentration
LOX:Lipoxygenase
MBC:Minimum  Bactericidal  Concentration
MDA:Malonaldehyde
MIC:Minimum  inhibitory  Concentration
NF-kB:Nuclear  factor  kappa-light-chain-enhancerof  activated  B  cells
OxLDL:Oxidized  low  density  lipoprotein
PLA2:Phospholipase  A2
SGOT:Serum  glutamic  oxaloacetic  transaminase
SGPT:Serum  glutamic-pyruvic  transaminase
SOD:Superoxide  dismutase
TBARS:Thiobarbituric  acid  reactive  substances
TBHQ:Tertiary  Butyl  hydroquinone
TPA:12-O-Tetradecanoylphorbol-13-acetate.

Conflict of Interests

The authors declare that they have no conflict of interests.

References

  1. V. Mozaffarian, Trees and Shrubs of Iran, Farhang Moaser, Tehran, Iran, 1st edition, 2005.
  2. C. Kole, Wild Crop Relatives: Genomic and Breeding Resources Legume Crops and Forages, Springer, Heidelberg, Germany, 2011.
  3. V. Mozaffarian, A Dictionary of Iranian Plant Names, Farhang Moaser, Tehran, Iran, 1998.
  4. A. derMarderosian and J. A. Beutler, The Review of Natural Products, Wolters Kluwer Health, Missouri, Mo, USA, 6th edition, 2010.
  5. G. Durmaz and V. Gökmen, “Changes in oxidative stability, antioxidant capacity and phytochemical composition of Pistacia terebinthus oil with roasting,” Food Chemistry, vol. 128, no. 2, pp. 410–414, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. F. Gogus, M. Z. Ozel, D. Kocak, J. F. Hamilton, and A. C. Lewis, “Analysis of roasted and unroasted Pistacia terebinthus volatiles using direct thermal desorption-GCxGC-TOF/MS,” Food Chemistry, vol. 129, no. 3, pp. 1258–1264, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Longo, A. Scardino, and G. Vasapollo, “Identification and quantification of anthocyanins in the berries of Pistacia lentiscus L., Phillyrea latifolia L. and Rubia peregrina L.,” Innovative Food Science and Emerging Technologies, vol. 8, no. 3, pp. 360–364, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Dimas, S. Hatziantoniou, J. H. Wyche, and P. Pantazis, “A mastic gum extract induces supression of growth of human colorectal tumor xenografts in immunodeficient mice,” In Vivo, vol. 23, no. 1, pp. 63–68, 2009. View at Scopus
  9. Avicenna, The Canon, Soroush Press, Tehran, Iran, 2008, Translated by: A. Shrafkandi.
  10. M. Kashaninejad, A. Mortazavi, A. Safekordi, and L. G. Tabil, “Some physical properties of Pistachio (Pistacia vera L.) nut and its kernel,” Journal of Food Engineering, vol. 72, no. 1, pp. 30–38, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. M. H. Aghili, Makhzan-al-Advia, Tehran University of Medical Sciences, Tehran, Iran, 2009, Edited by R. Rahimi, M.R. Shams Ardekani and F. Farjadmand.
  12. M. H. Alma, S. Nitz, H. Kollmannsberger, M. Digrak, F. T. Efe, and N. Yilmaz, “Chemical composition and antimicrobial activity of the essential oils from the gum of Turkish Pistachio (Pistacia vera L.),” Journal of Agricultural and Food Chemistry, vol. 52, no. 12, pp. 3911–3914, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Benamar, W. Rached, A. Derdour, and A. Marouf, “Screening of Algerian medicinal plants for acetylcholinesterase inhibitory activity,” Journal of Biological Sciences, vol. 10, no. 1, pp. 1–9, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Tsokou, K. Georgopoulou, E. Melliou, P. Magiatis, and E. Tsitsa, “Composition and enantiomeric analysis of the essential oil of the fruits and the leaves of Pistacia vera from Greece,” Molecules, vol. 12, no. 6, pp. 1233–1239, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Ramezani, M. Khaje-Karamoddin, and V. Karimi-Fard, “Chemical composition and anti-Helicobacter pylori activity of the essential oil of Pistacia vera,” Pharmaceutical Biology, vol. 42, no. 7, pp. 488–490, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Özcan, O. Tzakou, and M. Couladis, “Essential oil composition of the turpentine tree (Pistacia terebinthus L.) fruits growing wild in Turkey,” Food Chemistry, vol. 114, no. 1, pp. 282–285, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Usai, G. Pintore, M. Chessa, and B. Tirlllini, “Essential oil composition of different aerial parts of Pistacia terebinthus L. growing wild in Sardinia,” Journal of Essential Oil Research, vol. 18, no. 4, pp. 383–385, 2006. View at Scopus
  18. G. Flamini, A. Bader, P. L. Cioni, A. Katbeh-Bader, and I. Morelli, “Composition of the essential oil of leaves, galls, and ripe and unripe fruits of Jordanian Pistacia palaestina Boiss,” Journal of Agricultural and Food Chemistry, vol. 52, no. 3, pp. 572–576, 2004. View at Scopus
  19. C. Koutsoudaki, M. Krsek, and A. Rodger, “Chemical composition and antibacterial activity of the essential oil and the gum of Pistacia lentiscus var. chia,” Journal of Agricultural and Food Chemistry, vol. 53, no. 20, pp. 7681–7685, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Mecherara-Idjeri, A. Hassani, V. Castola, and J. Casanova, “Composition and chemical variability of the essential oil from Pistacia lentiscus L. growing wild in Algeria part I: leaf oil,” Journal of Essential Oil Research, vol. 20, no. 2, pp. 32–38, 2008. View at Scopus
  21. S. Mecherara-Idjeri, A. Hassani, V. Castola, and J. Casanova, “Composition and chemical variability of the essential oil from Pistacia lentiscus L. growing wild in Algeria: part II: fruit oil,” Journal of Essential Oil Research, vol. 20, no. 2, pp. 104–107, 2008. View at Scopus
  22. S. Zrira, A. Elamrani, and B. Benjilali, “Chemical composition of the essential oil of Pistacia lentiscus L. from Morocco—a seasonal variation,” Flavour and Fragrance Journal, vol. 18, no. 6, pp. 475–480, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Gardeli, P. Vassiliki, M. Athanasios, T. Kibouris, and M. Komaitis, “Essential oil composition of Pistacia lentiscus L. and Myrtus communis L.: evaluation of antioxidant capacity of methanolic extracts,” Food Chemistry, vol. 107, no. 3, pp. 1120–1130, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Fernández, A. Camacho, C. Fernández, and J. Altarejos, “Composition of the essential oils from galls and aerial parts of Pistacia lentiscus L.,” Journal of Essential Oil Research, vol. 12, no. 1, pp. 19–23, 2000. View at Scopus
  25. S. Mecherara-Idjeri, A. Hassani, V. Castola, and J. Casanova, “Composition of leaf, fruit and gall essential oils of algerian Pistacia atlantica desf,” Journal of Essential Oil Research, vol. 20, no. 3, pp. 215–219, 2008. View at Scopus
  26. A. Delazar, R. G. Reid, and S. D. Sarker, “GC-MS analysis of the essential oil from the oleoresin of Pistacia atlantica var. mutica,” Chemistry of Natural Compounds, vol. 40, no. 1, pp. 24–27, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. A. F. Barrero, M. M. Herrador, J. R. Arteaga et al., “Chemical composition of the essential oils of Pistacia atlantica Desf,” Journal of Essential Oil Research, vol. 17, no. 1, pp. 52–54, 2005. View at Scopus
  28. J. N. Roitman, G. B. Merrill, and J. J. Beck, “Survey of ex situ fruit and leaf volatiles from several Pistacia cultivars grown in California,” Journal of the Science of Food and Agriculture, vol. 91, no. 5, pp. 934–942, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Couladis, M. Özcan, O. Tzakou, and A. Akgül, “Comparative essential oil composition of various parts of the turpentine tree (Pistacia terebinthus L) growing wild in Turkey,” Journal of the Science of Food and Agriculture, vol. 83, no. 2, pp. 136–138, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. M. E. Duru, A. Cakir, S. Kordali et al., “Chemical composition and antifungal properties of essential oils of three Pistacia species,” Fitoterapia, vol. 74, no. 1-2, pp. 170–176, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. O. Tzakou, I. Bazos, and A. Yannitsaros, “Volatile metabolites of Pistacia atlantica Desf. from Greece,” Flavour and Fragrance Journal, vol. 22, no. 5, pp. 358–362, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. N. Gourine, M. Yousfi, I. Bombarda, B. Nadjemi, P. Stocker, and E. M. Gaydou, “Antioxidant activities and chemical composition of essential oil of Pistacia atlantica from Algeria,” Industrial Crops and Products, vol. 31, no. 2, pp. 203–208, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Paraschos, P. Magiatis, P. Gousia et al., “Chemical investigation and antimicrobial properties of mastic water and its major constituents,” Food Chemistry, vol. 129, no. 3, pp. 907–911, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Congiu, D. Falconieri, B. Marongiu, A. Piras, and S. Porcedda, “Extraction and isolation of Pistacia lentiscus L. essential oil by supercritical CO2,” Flavour and Fragrance Journal, vol. 17, no. 4, pp. 239–244, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. E.-H. Benyoussef, S. Charchari, N. Nacer-Bey, N. NabilaYahiaoui, A. Chakou, and M. Bellatreche, “The essential oil of Pistacia lentiscus L. from Algeria,” Journal of Essential Oil Research, vol. 17, no. 6, pp. 642–644, 2005. View at Scopus
  36. V. Castola, A. Bighelli, and J. Casanova, “Intraspecific chemical variability of the essential oil of Pistacia lentiscus L. from Corsica,” Biochemical Systematics and Ecology, vol. 28, no. 1, pp. 79–88, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Ait Said, C. Fernandez, S. Greff, A. Derridj, T. Gauquelin, and J.-P. Mevy, “Inter-population variability of leaf morpho-anatomical and terpenoid patterns of Pistacia atlantica Desf. ssp. atlantica growing along an aridity gradient in Algeria,” Flora, vol. 206, no. 4, pp. 397–405, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Taran, M. Sharifi, E. Azizi, and M. Khanahmadi, “Antimicrobial activity of the leaves of Pistacia khinjuk,” Journal of Medicinal Plants, vol. 9, no. 6, pp. 81–85, 2010. View at Scopus
  39. T. Dob, D. Dahmane, and C. Chelghoum, “Chemical composition of the essential oils of Pistacia lentiscus L. from Algeria,” Journal of Essential Oil Research, vol. 18, no. 3, pp. 335–338, 2006. View at Scopus
  40. A. N. Assimopoulou and V. P. Papageorgiou, “GC-MS analysis of penta- and tetra-cyclic triterpenes from resins of Pistacia species. Part I. Pistacia lentiscus var. Chia,” Biomedical Chromatography, vol. 19, no. 4, pp. 285–311, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. A. N. Assimopoulou and V. P. Papageorgiou, “GC-MS analysis of penta- and tetra-cyclic triterpenes from resins of Pistacia species. Part II. Pistacia terebinthus var. Chia,” Biomedical Chromatography, vol. 19, no. 8, pp. 586–605, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. M. S. Sharifi and S. L. Hazell, “Isolation, analysis and antimicrobial activity of the acidic fractions of mastic, Kurdica, Mutica and Cabolica gums from Genus Pistacia,” Global Journal of Health Science, vol. 4, no. 1, pp. 217–228, 2012.
  43. E. M. Giner-Larza, S. Máñez, R. M. Giner et al., “Anti-inflammatory triterpenes from Pistacia terebinthus galls,” Planta Medica, vol. 68, no. 4, pp. 311–315, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Tomaino, M. Martorana, T. Arcoraci, D. Monteleone, C. Giovinazzo, and A. Saija, “Antioxidant activity and phenolic profile of pistachio (Pistacia vera L., variety Bronte) seeds and skins,” Biochimie, vol. 92, no. 9, pp. 1115–1122, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Romani, P. Pinelli, C. Galardi, N. Mulinacci, and M. Tattini, “Identification and quantification of galloyl derivatives, flavonoid glycosides and anthocyanins in leaves of Pistacia lentiscus L.,” Phytochemical Analysis, vol. 13, no. 2, pp. 79–86, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Yousfi, A. Djeridane, I. Bombarda, C.-H. Chahrazed-Hamia, B. Duhem, and E. M. Gaydou, “Isolation and characterization of a new hispolone derivative from antioxidant extracts of Pistacia atlantica,” Phytotherapy Research, vol. 23, no. 9, pp. 1237–1242, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. W. Bhouri, S. Derbel, I. Skandrani et al., “Study of genotoxic, antigenotoxic and antioxidant activities of the digallic acid isolated from Pistacia lentiscus fruits,” Toxicology in Vitro, vol. 24, no. 2, pp. 509–515, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Saitta, D. Giuffrida, G. L. La Torre, A. G. Potortì, and G. Dugo, “Characterisation of alkylphenols in pistachio (Pistacia vera L.) kernels,” Food Chemistry, vol. 117, no. 3, pp. 451–455, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. Ö. Tokuşoǧlu, M. K. Ünal, and F. Yemiş, “Determination of the phytoalexin resveratrol (3,5,4′-Trihydroxystilbene) in peanuts and pistachios by High-Performance Liquid Chromatographic Diode Array (HPLC-DAD) and Gas Chromatography-Mass Spectrometry (GC-MS),” Journal of Agricultural and Food Chemistry, vol. 53, no. 12, pp. 5003–5009, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. F. Grippi, L. Crosta, G. Aiello et al., “Determination of stilbenes in Sicilian pistachio by high-performance liquid chromatographic diode array (HPLC-DAD/FLD) and evaluation of eventually mycotoxin contamination,” Food Chemistry, vol. 107, no. 1, pp. 483–488, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. G. Ballistreri, E. Arena, and B. Fallico, “Influence of ripeness and drying process on the polyphenols and tocopherols of Pistacia vera L.,” Molecules, vol. 14, no. 11, pp. 4358–4369, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. A. Abdelwahed, I. Bouhlel, I. Skandrani et al., “Study of antimutagenic and antioxidant activities of Gallic acid and 1,2,3,4,6-pentagalloylglucose from Pistacia lentiscus. Confirmation by microarray expression profiling,” Chemico-Biological Interactions, vol. 165, no. 1, pp. 1–13, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. G. Topçu, M. Ay, A. Bilici, C. Sarıkürkcü, M. Öztürk, and A. Ulubelen, “A new flavone from antioxidant extracts of Pistacia terebinthus,” Food Chemistry, vol. 103, no. 3, pp. 816–822, 2007. View at Publisher · View at Google Scholar
  54. S. A. Kawashty, S. A. M. Mosharrafa, M. El-Gibali, and N. A. M. Saleh, “The flavonoids of four Pistacia species in Egypt,” Biochemical Systematics and Ecology, vol. 28, no. 9, pp. 915–917, 2000. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Adams, I. Plitzko, M. Kaiser, R. Brun, and M. Hamburger, “HPLC-profiling for antiplasmodial compounds-3-Methoxycarpachromene from Pistacia atlantica,” Phytochemistry Letters, vol. 2, no. 4, pp. 159–162, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. M. G. Bellomo and B. Fallico, “Anthocyanins, chlorophylls and xanthophylls in pistachio nuts (Pistacia vera) of different geographic origin,” Journal of Food Composition and Analysis, vol. 20, no. 3, pp. 352–359, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. X. Wu and R. L. Prior, “Identification and characterization of anthocyanins by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry in common foods in the United States: vegetables, nuts, and grains,” Journal of Agricultural and Food Chemistry, vol. 53, no. 8, pp. 3101–3113, 2005. View at Scopus
  58. F. Satil, N. Azcan, and K. H. C. Baser, “Fatty acid composition of pistachio nuts in Turkey,” Chemistry of Natural Compounds, vol. 39, no. 4, pp. 322–324, 2003. View at Publisher · View at Google Scholar · View at Scopus
  59. E. Arena, S. Campisi, B. Fallico, and E. Maccarone, “Distribution of fatty acids and phytosterols as a criterion to discriminate geographic origin of pistachio seeds,” Food Chemistry, vol. 104, no. 1, pp. 403–408, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. H. Trabelsi, O. A. Cherif, F. Sakouhi et al., “Total lipid content, fatty acids and 4-desmethylsterols accumulation in developing fruit of Pistacia lentiscus L. growing wild in Tunisia,” Food Chemistry, vol. 131, no. 2, pp. 434–440, 2012. View at Publisher · View at Google Scholar · View at Scopus
  61. M. Charef, M. Yousfi, M. Saidi, and P. Stocker, “Determination of the fatty acid composition of Acorn (Quercus), Pistacia lentiscus seeds growing in algeria,” Journal of the American Oil Chemists' Society, vol. 85, no. 10, pp. 921–924, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Özcan, “Characteristics of fruit and oil of terebinth (Pistacia terebinthus L.) growing wild in Turkey,” Journal of the Science of Food and Agriculture, vol. 84, no. 6, pp. 517–520, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Yousfi, B. Nedjmi, R. Bellal, D. Ben Bertal, and G. Palla, “Fatty acids and sterols of Pistacia atlantica fruit oil,” Journal of the American Oil Chemists' Society, vol. 79, no. 10, pp. 1049–1050, 2002. View at Scopus
  64. K. M. Phillips, D. M. Ruggio, and M. Ashraf-Khorassani, “Phytosterol composition of nuts and seeds commonly consumed in the United States,” Journal of Agricultural and Food Chemistry, vol. 53, no. 24, pp. 9436–9445, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. M. Aslan, I. Orhan, and B. Şener, “Comparison of the seed oils of Pistacia vera L. of different origins with respect to fatty acids,” International Journal of Food Science and Technology, vol. 37, no. 3, pp. 333–335, 2002. View at Publisher · View at Google Scholar · View at Scopus
  66. R. Farhoosh, J. Tavakoli, and M. H. H. Khodaparast, “Chemical composition and oxidative stability of kernel oils from two current subspecies of Pistacia atlantica in Iran,” Journal of the American Oil Chemists' Society, vol. 85, no. 8, pp. 723–729, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. H. Benhassaini, M. Bendahmane, and N. Benchalgo, “The chemical composition of fruits of Pistacia atlantica desf. subsp. atlantica from Algeria,” Chemistry of Natural Compounds, vol. 43, no. 2, pp. 121–124, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. S. Kizil and M. Turk, “Microelement contents and fatty acid compositions of Rhus coriaria L. and Pistacia terebinthus L. fruits spread commonly in the South Eastern Anatolia region of Turkey,” Natural Product Research, vol. 24, no. 1, pp. 92–98, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. P. Sharayei, R. Farhoosh, H. Poorazrang, and M. H. H. Khodaparast, “Improvement of canola oil frying stability by bene kernel oil's unsaponifiable matter,” Journal of the American Oil Chemists' Society, vol. 88, no. 7, pp. 993–1000, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. B. Matthäus and M. M. Özcan, “Quantitation of fatty acids, sterols, and tocopherols in turpentine (Pistacia terebinthus Chia) growing wild in Turkey,” Journal of Agricultural and Food Chemistry, vol. 54, no. 20, pp. 7667–7671, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. D. Giuffrida, M. Saitta, L. La Torre, L. Bombaci, and G. Dugo, “Carotenoid, chlorophyll and chlorophyll-derived compounds in pistachio kernels (Pistacia vera L.) from Sicily,” Italian Journal of Food Science, vol. 18, no. 3, pp. 309–316, 2006. View at Scopus
  72. B. Kivçak and S. Akay, “Quantitative determination of α-tocopherol in Pistacia lentiscus, Pistacia lentiscus var. chia, and Pistacia terebinthus by TLC-densitometry and colorimetry,” Fitoterapia, vol. 76, no. 1, pp. 62–66, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. R. Farhoosh and M. H. T. Kafrani, “Frying performance of the hull oil unsaponifiable matter of Pistacia atlantica subsp. mutica,” European Journal of Lipid Science and Technology, vol. 112, no. 3, pp. 343–348, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. A. Barra, V. Coroneo, S. Dessi, P. Cabras, and A. Angioni, “Characterization of the volatile constituents in the essential oil of Pistacia lentiscus L. from different origins and its antifungal and antioxidant activity,” Journal of Agricultural and Food Chemistry, vol. 55, no. 17, pp. 7093–7098, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. D. Atmani, N. Chaher, M. Berboucha et al., “Antioxidant capacity and phenol content of selected Algerian medicinal plants,” Food Chemistry, vol. 112, no. 2, pp. 303–309, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. H. Sakagami, K. Kishino, M. Kobayashi et al., “Selective antibacterial and apoptosis-modulating activities of mastic,” In Vivo, vol. 23, no. 2, pp. 215–224, 2009. View at Scopus
  77. N. K. Andrikopoulos, A. C. Kaliora, A. N. Assimopoulou, and V. P. Papapeorgiou, “Biological activity of some naturally occurring resins, gums and pigments against in vitro LDL oxidation,” Phytotherapy Research, vol. 17, no. 5, pp. 501–507, 2003. View at Publisher · View at Google Scholar · View at Scopus
  78. A. Peksel, “Antioxidative properties of decoction of Pistacia atlantica Desf. leaves,” Asian Journal of Chemistry, vol. 20, no. 1, pp. 681–693, 2008. View at Scopus
  79. R. Farhoosh, M. H. H. Khodaparast, and A. Sharif, “Bene hull oil as a highly stable and antioxidative vegetable oil,” European Journal of Lipid Science and Technology, vol. 111, no. 12, pp. 1259–1265, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. R. Farhoosh, M. H. Tavassoli-Kafrani, and A. Sharif, “Antioxidant activity of the fractions separated from the unsaponifiable matter of bene hull oil,” Food Chemistry, vol. 126, no. 2, pp. 583–589, 2011. View at Publisher · View at Google Scholar · View at Scopus
  81. A. H. Goli, M. Barzegar, and M. A. Sahari, “Antioxidant activity and total phenolic compounds of pistachio (Pistachia vera) hull extracts,” Food Chemistry, vol. 92, no. 3, pp. 521–525, 2005. View at Publisher · View at Google Scholar · View at Scopus
  82. C. Gentile, L. Tesoriere, D. Butera et al., “Antioxidant activity of Sicilian pistachio (Pistacia vera L. var. Bronte) nut extract and its bioactive components,” Journal of Agricultural and Food Chemistry, vol. 55, no. 3, pp. 643–648, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. H. Hosseinzadeha, S. Abolghasem, S. Tabassib, N. M. Moghadamc, M. Rashediniac, and S. Mehri, “Antioxidant activity of Pistacia vera fruits, leaves and gum extracts,” Iranian Journal of Pharmaceutical Research, vol. 11, no. 3, pp. 879–887, 2012.
  84. D. D. Kavak, E. Altiok, O. Bayraktar, and S. Ülkü, “Pistacia terebinthus extract: as a potential antioxidant, antimicrobial and possible β-glucuronidase inhibitor,” Journal of Molecular Catalysis B, vol. 64, no. 3-4, pp. 167–171, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. I. E. Orhan, F. S. Senol, A. R. Gulpinar, N. Sekeroglu, M. Kartal, and B. Sener, “Neuroprotective potential of some terebinth coffee brands and the unprocessed fruits of Pistacia terebinthus L. and their fatty and essential oil analyses,” Food Chemistry, vol. 130, no. 4, pp. 882–888, 2012. View at Publisher · View at Google Scholar · View at Scopus
  86. F. B. Douissa, N. Hayder, L. Chekir-Ghedira et al., “New study of the essential oil from leaves of Pistacia lentiscus L. (Anacardiaceae) from Tunisia,” Flavour and Fragrance Journal, vol. 20, no. 4, pp. 410–414, 2005. View at Publisher · View at Google Scholar · View at Scopus
  87. N. Hayder, R. B. Ammar, A. Abdelwahed et al., “Antibacterial and antimutagenic activitiy of extracts and essential oil from (Tunisian) Pistacia lentiscus,” Toxicological & Environmental Chemistry, vol. 87, no. 4, pp. 567–573, 2005. View at Publisher · View at Google Scholar · View at Scopus
  88. N. Benhammou, B. FA, and T. K. Panovska, “Antioxidant and antimicrobial activities of the Pistacia lentiscus and Pistacia atlantica extracts,” African Journal of Pharmacy and Pharmacology, vol. 2, no. 2, pp. 22–28, 2008.
  89. B. Özçelik, M. Aslan, I. Orhan, and T. Karaoglu, “Antibacterial, antifungal, and antiviral activities of the lipophylic extracts of Pistacia vera,” Microbiological Research, vol. 160, no. 2, pp. 159–164, 2005. View at Publisher · View at Google Scholar · View at Scopus
  90. B. R. Ghalem and B. Mohamed, “Essential oil from gum of Pistacia atlantica Desf.: screening of antimicrobial activity,” African Journal of Pharmacy and Pharmacology, vol. 3, no. 1, pp. 13–15, 2009. View at Scopus
  91. M. Tohidi, M. Khayami, V. Nejati, and H. Meftahizade, “Evaluation of antibacterial activity and wound healing of Pistacia atlantica and Pistacia khinjuk,” Journal of Medicinal Plants Research, vol. 5, no. 17, pp. 4310–4314, 2011.
  92. Y. Gerchman and M. Inbar, “Distinct antimicrobial activities in aphid galls on Pistacia atlantica,” Plant Signaling & Behavior, vol. 6, no. 12, pp. 2008–2012, 2011. View at Publisher · View at Google Scholar · View at Scopus
  93. M. Taran, M. Mohebali, and J. Esmaeli, “In vivo efficacy of gum obtained Pistacia atlantica in experimental treatment of cutaneous leishmaniasis,” Iranian Journal of Public Health, vol. 39, no. 1, pp. 36–41, 2010. View at Scopus
  94. I. Orhan, M. Aslan, B. Sener, M. Kaiser, and D. Tasdemir, “In vitro antiprotozoal activity of the lipophilic extracts of different parts of Turkish Pistacia vera L.,” Phytomedicine, vol. 13, no. 9-10, pp. 735–739, 2006. View at Publisher · View at Google Scholar · View at Scopus
  95. E. M. Giner-Larza, S. Máñez, R. M. Giner-Pons, M. Carmen Recio, and J. L. Ríos, “On the anti-inflammatory and anti-phospholipase A2 activity of extracts from lanostane-rich species,” Journal of Ethnopharmacology, vol. 73, no. 1-2, pp. 61–69, 2000. View at Publisher · View at Google Scholar · View at Scopus
  96. E. M. Giner-Larza, S. Máez, M. C. Recio et al., “Oleanonic acid, a 3-oxotriterpene from Pistacia, inhibits leukotriene synthesis and has anti-inflammatory activity,” European Journal of Pharmacology, vol. 428, no. 1, pp. 137–143, 2001. View at Publisher · View at Google Scholar · View at Scopus
  97. H. Hosseinzadeh, E. Behravan, and M. M. Soleimani, “Antinociceptive and anti-inflammatory effects of Pistacia vera leaf extract in mice,” Iranian Journal of Pharmaceutical Research, vol. 10, no. 4, pp. 821–828, 2011. View at Scopus
  98. S. Loizou, S. Paraschos, S. Mitakou, G. P. Chrousos, I. Lekakis, and P. Moutsatsou, “Chios mastic gum extract and isolated phytosterol tirucallol exhibit anti-inflammatory activity in human aortic endothelial cells,” Experimental Biology and Medicine, vol. 234, no. 5, pp. 553–561, 2009. View at Publisher · View at Google Scholar · View at Scopus
  99. A. Triantafyllou, A. Bikineyeva, A. Dikalova, R. Nazarewicz, S. Lerakis, and S. Dikalov, “Anti-inflammatory activity of Chios mastic gum is associated with inhibition of TNF-alpha induced oxidative stress,” Nutrition Journal, vol. 10, no. 1, article 64, 2011. View at Publisher · View at Google Scholar · View at Scopus
  100. R. Rahimi, M. R. Shams-Ardekani, and M. Abdollahi, “A review of the efficacy of traditional Iranian medicine for inflammatory bowel disease,” World Journal of Gastroenterology, vol. 16, no. 36, pp. 4504–4514, 2010. View at Publisher · View at Google Scholar · View at Scopus
  101. R. Rahimi, S. Mozaffari, and M. Abdollahi, “On the use of herbal medicines in management of inflammatory bowel diseases: a systematic review of animal and human studies,” Digestive Diseases and Sciences, vol. 54, no. 3, pp. 471–480, 2009. View at Publisher · View at Google Scholar · View at Scopus
  102. M. H. Farzaei, R. Rahimi, Z. Abbasabadi, and M. Abdollahi, “An evidence-based review on medicinal plants used for the treatment of peptic ulcer in traditional Iranian medicine,” International Journal of Pharmacology, vol. 9, no. 2, pp. 108–124, 2013. View at Publisher · View at Google Scholar
  103. M. S. Al-Said, A. M. Ageel, N. S. Parmar, and M. Tariq, “Evaluation of mastic, a crude drug obtained from Pistacia lentiscus for gastric and duodenal anti-ulcer activity,” Journal of Ethnopharmacology, vol. 15, no. 3, pp. 271–278, 1986. View at Scopus
  104. K. J. Dabos, E. Sfika, L. J. Vlatta, D. Frantzi, G. I. Amygdalos, and G. Giannikopoulos, “Is Chios mastic gum effective in the treatment of functional dyspepsia? A prospective randomised double-blind placebo controlled trial,” Journal of Ethnopharmacology, vol. 127, no. 2, pp. 205–209, 2010. View at Publisher · View at Google Scholar · View at Scopus
  105. H.-J. Kim and C. Neophytou, “Natural anti-inflammatory compounds for the management and adjuvant therapy of inflammatory bowel disease and its drug delivery system,” Archives of Pharmacal Research, vol. 32, no. 7, pp. 997–1004, 2009. View at Publisher · View at Google Scholar · View at Scopus
  106. R. Rahimi, A. Baghaei, M. Baeeri et al., “Promising effect of Magliasa, a traditional Iranian formula, on experimental colitis on the basis of biochemical and cellular findings,” World Journal of Gastroenterology, vol. 19, no. 12, pp. 1901–1911, 2013.
  107. A. C. Kaliora, M. G. Stathopoulou, J. K. Triantafillidis, G. V. Z. Dedoussis, and N. K. Andrikopoulous, “Chios mastic treatment of patients with active Crohn's disease,” World Journal of Gastroenterology, vol. 13, no. 5, pp. 748–753, 2007. View at Scopus
  108. A. C. Kaliora, M. G. Stathopoulou, J. K. Triantafillidis, G. V. Z. Dedoussis, and N. K. Andrikopoulos, “Alterations in the function of circulating mononuclear cells derived from patients with Crohn's disease treated withmastic,” World Journal of Gastroenterology, vol. 13, no. 45, pp. 6031–6036, 2007. View at Publisher · View at Google Scholar · View at Scopus
  109. I. I. Hamdan and F. U. Afifi, “Studies on the in vitro and in vivo hypoglycemic activities of some medicinal plants used in treatment of diabetes in Jordanian traditional medicine,” Journal of Ethnopharmacology, vol. 93, no. 1, pp. 117–121, 2004. View at Publisher · View at Google Scholar · View at Scopus
  110. V. Kasabri, F. U. Afifi, and I. Hamdan, “In vitro and in vivo acute antihyperglycemic effects of five selected indigenous plants from Jordan used in traditional medicine,” Journal of Ethnopharmacology, vol. 133, no. 2, pp. 888–896, 2011. View at Publisher · View at Google Scholar · View at Scopus
  111. A. Triantafyllou, N. Chaviaras, T. N. Sergentanis, E. Protopapa, and J. Tsaknis, “Chios mastic gum modulates serum biochemical parameters in a human population,” Journal of Ethnopharmacology, vol. 111, no. 1, pp. 43–49, 2007. View at Publisher · View at Google Scholar · View at Scopus
  112. K. V. Balan, J. Prince, Z. Han et al., “Antiproliferative activity and induction of apoptosis in human colon cancer cells treated in vitro with constituents of a product derived from Pistacia lentiscus L. var. chia,” Phytomedicine, vol. 14, no. 4, pp. 263–272, 2007. View at Publisher · View at Google Scholar · View at Scopus
  113. M.-L. He, W.-W. Chen, P.-J. Zhang et al., “Gum mastic increases maspin expression in prostate cancer cells,” Acta Pharmacologica Sinica, vol. 28, no. 4, pp. 567–572, 2007. View at Publisher · View at Google Scholar · View at Scopus
  114. M.-L. He, A. Li, C.-S. Xu et al., “Mechanisms of antiprostate cancer by gum mastic: NF-κB signal as target,” Acta Pharmacologica Sinica, vol. 28, no. 3, pp. 446–452, 2007. View at Publisher · View at Google Scholar · View at Scopus
  115. S. Magkouta, G. T. Stathopoulos, I. Psallidas et al., “Protective effects of mastic oil from Pistacia lentiscus variation chia against experimental growth of lewis lung carcinoma,” Nutrition and Cancer, vol. 61, no. 5, pp. 640–648, 2009. View at Publisher · View at Google Scholar · View at Scopus
  116. H. Loutrari, S. Magkouta, A. Pyriochou et al., “Mastic oil from Pistacia lentiscus var. chia inhibits growth and survival of human K562 leukemia cells and attenuates angiogenesis,” Nutrition and Cancer, vol. 55, no. 1, pp. 86–93, 2006. View at Publisher · View at Google Scholar · View at Scopus
  117. K. Doi, M. Wei, M. Kitano, N. Uematsu, M. Inoue, and H. Wanibuchi, “Enhancement of preneoplastic lesion yield by Chios Mastic Gum in a rat liver medium-term carcinogenesis bioassay,” Toxicology and Applied Pharmacology, vol. 234, no. 1, pp. 135–142, 2009. View at Publisher · View at Google Scholar · View at Scopus
  118. C. Giaginis and S. Theocharis, “Current evidence on the anticancer potential of chios mastic gum,” Nutrition and Cancer, vol. 63, no. 8, pp. 1174–1184, 2011. View at Publisher · View at Google Scholar · View at Scopus
  119. P. F. Rezaei, S. Fouladdel, S. Hassani et al., “Induction of apoptosis and cell cycle arrest by pericarp polyphenol-rich extract of Baneh in human colon carcinoma HT29 cells,” Food and Chemical Toxicology, vol. 50, no. 3-4, pp. 1054–1059, 2012. View at Publisher · View at Google Scholar · View at Scopus
  120. H. Almehdar, H. M. Abdallah, A.-M. M. Osman, and E. A. Abdel-Sattar, “In vitro cytotoxic screening of selected Saudi medicinal plants,” Journal of Natural Medicines, vol. 66, no. 2, pp. 406–412, 2012. View at Publisher · View at Google Scholar · View at Scopus
  121. S. Janakat and H. Al-Merie, “Evaluation of hepatoprotective effect of Pistacia lentiscus, Phillyrea latifolia and Nicotiana glauca,” Journal of Ethnopharmacology, vol. 83, no. 1-2, pp. 135–138, 2002. View at Publisher · View at Google Scholar · View at Scopus
  122. P. Ljubuncic, H. Song, U. Cogan, H. Azaizeh, and A. Bomzon, “The effects of aqueous extracts prepared from the leaves of Pistacia lentiscus in experimental liver disease,” Journal of Ethnopharmacology, vol. 100, no. 1-2, pp. 198–204, 2005. View at Publisher · View at Google Scholar · View at Scopus
  123. K. A. Marinou, K. Georgopoulou, G. Agrogiannis et al., “Differential effect of Pistacia vera extracts on experimental atherosclerosis in the rabbit animal model: an experimental study,” Lipids in Health and Disease, vol. 9, no. 73, pp. 1–9, 2010. View at Publisher · View at Google Scholar · View at Scopus
  124. K. Edwards, I. Kwaw, J. Matud, and I. Kurtz, “Effect of pistachio nuts on serum lipid levels in patients with moderate hypercholesterolemia,” Journal of the American College of Nutrition, vol. 18, no. 3, pp. 229–232, 1999. View at Scopus
  125. T. Bakirel, “The investigation of the effects of Pistacia terebinthus L. upon experimentally induced hypercholesterolemia and atherosclerosis in rabbits,” Turkish Journal of Veterinary and Animal Sciences, vol. 27, pp. 1283–1292, 2003.
  126. G. V. Z. Dedoussis, A. C. Kaliora, S. Psarras et al., “Antiatherogenic effect of Pistacia lentiscus via GSH restoration and downregulation of CD36 mRNA expression,” Atherosclerosis, vol. 174, no. 2, pp. 293–303, 2004. View at Publisher · View at Google Scholar · View at Scopus
  127. A. Peksel, I. Arisan-Atac, and R. Yanardag, “Evaluation of antioxidant and antiacetylcholinesterase activities of the extracts of Pistacia lentiscus Desf. leaves,” Journal of Food Biochemistry, vol. 34, no. 3, pp. 451–476, 2010. View at Publisher · View at Google Scholar · View at Scopus
  128. M. Wellmann, Pedanii Dioscuridis Anazarbei, de Materia Medica Libri Quinque, Weidmann, Berlin, Germany, 1907.
  129. E. Hanlidou, R. Karousou, V. Kleftoyanni, and S. Kokkini, “The herbal market of Thessaloniki (N Greece) and its relation to the ethnobotanical tradition,” Journal of Ethnopharmacology, vol. 91, no. 2-3, pp. 281–299, 2004. View at Publisher · View at Google Scholar · View at Scopus
  130. E. Mati and H. de Boer, “Ethnobotany and trade of medicinal plants in the Qaysari Market, Kurdish Autonomous Region, Iraq,” Journal of Ethnopharmacology, vol. 133, no. 2, pp. 490–510, 2011. View at Publisher · View at Google Scholar · View at Scopus
  131. A. M. Scherrer, R. Motti, and C. S. Weckerle, “Traditional plant use in the areas of Monte Vesole and Ascea, Cilento National Park (Campania, Southern Italy),” Journal of Ethnopharmacology, vol. 97, no. 1, pp. 129–143, 2005. View at Publisher · View at Google Scholar · View at Scopus
  132. M. T. Palmese, R. E. Uncini Manganelli, and P. E. Tomei, “An ethno-pharmacobotanical survey in the Sarrabus district (South-East Sardinia),” Fitoterapia, vol. 72, no. 6, pp. 619–643, 2001. View at Publisher · View at Google Scholar · View at Scopus
  133. E. Lev and Z. Amar, “Ethnopharmacological survey of traditional drugs sold in the Kingdom of Jordan,” Journal of Ethnopharmacology, vol. 82, no. 2-3, pp. 131–145, 2002. View at Publisher · View at Google Scholar · View at Scopus
  134. J. El-Hilaly, M. Hmammouchi, and B. Lyoussi, “Ethnobotanical studies and economic evaluation of medicinal plants in Taounate province (Northern Morocco),” Journal of Ethnopharmacology, vol. 86, no. 2-3, pp. 149–158, 2003. View at Publisher · View at Google Scholar · View at Scopus
  135. M. H. Novais, I. Santos, S. Mendes, and C. Pinto-Gomes, “Studies on pharmaceutical ethnobotany in Arrabida Natural Park (Portugal),” Journal of Ethnopharmacology, vol. 93, no. 2-3, pp. 183–195, 2004. View at Publisher · View at Google Scholar · View at Scopus
  136. M. J. Sanz, M. C. Terencio, and M. Paya, “Isolation and hypotensive activity of a polymeric procyanidin fraction from Pistacia lentiscus L.,” Pharmazie, vol. 47, no. 6, pp. 466–467, 1992. View at Scopus
  137. M. Mosaddegh, F. Naghibi, H. Moazzeni, A. Pirani, and S. Esmaeili, “Ethnobotanical survey of herbal remedies traditionally used in Kohghiluyeh va Boyer Ahmad province of Iran,” Journal of Ethnopharmacology, vol. 141, no. 1, pp. 80–95, 2012. View at Publisher · View at Google Scholar · View at Scopus
  138. E. Altundag and M. Ozturk, “Ethnomedicinal studies on the plant resources of East Anatolia, Turkey,” Procedia-Social and Behavioral Sciences, vol. 19, pp. 756–777, 2011. View at Publisher · View at Google Scholar
  139. J. Duke, Medicinal Plants of the Bible, Conch Puplications, New York, NY, USA, 1983.
  140. A. Mohagheghzadeh, P. Faridi, and Y. Ghasemi, “Analysis of Mount Atlas mastic smoke: a potential food preservative,” Fitoterapia, vol. 81, no. 6, pp. 577–580, 2010. View at Publisher · View at Google Scholar · View at Scopus
  141. A. Agelet and J. Vallès, “Studies on pharmaceutical ethnobotany in the region of Pallars (Pyrenees, Catalonia, Iberian Peninsula). Part II. New or very rare uses of previously known medicinal plants,” Journal of Ethnopharmacology, vol. 84, no. 2-3, pp. 211–227, 2003. View at Publisher · View at Google Scholar · View at Scopus
  142. G. Benítez, M. R. González-Tejero, and J. Molero-Mesa, “Pharmaceutical ethnobotany in the western part of Granada province (Southern Spain): ethnopharmacological synthesis,” Journal of Ethnopharmacology, vol. 129, no. 1, pp. 87–105, 2010. View at Publisher · View at Google Scholar · View at Scopus
  143. U. Cakilcioglu, S. Khatun, I. Turkoglu, and S. Hayta, “Ethnopharmacological survey of medicinal plants in Maden (Elazig-Turkey),” Journal of Ethnopharmacology, vol. 137, no. 1, pp. 469–486, 2011. View at Publisher · View at Google Scholar · View at Scopus
  144. E. Sezik, E. Yeşilada, G. Honda, Y. Takaishi, Y. Takeda, and T. Tanaka, “Traditional medicine in Turkey X. Folk medicine in Central Anatolia,” Journal of Ethnopharmacology, vol. 75, no. 2-3, pp. 95–115, 2001. View at Publisher · View at Google Scholar · View at Scopus
  145. E. Ugurlu and O. Secmen, “Medicinal plants popularly used in the villages of Yunt Mountain(Manisa-Turkey),” Fitoterapia, vol. 79, no. 2, pp. 126–131, 2008. View at Publisher · View at Google Scholar · View at Scopus
  146. I. Orhan, E. Küpeli, M. Aslan, M. Kartal, and E. Yesilada, “Bioassay-guided evaluation of anti-inflammatory and antinociceptive activities of pistachio, Pistacia vera L.,” Journal of Ethnopharmacology, vol. 105, no. 1-2, pp. 235–240, 2006. View at Publisher · View at Google Scholar · View at Scopus
  147. M. Bahmani and Z. Eftekhari, “An ethnoveterinary study of medicinal plants in treatment of diseases and syndromes of herd dog in southern regions of Ilam province, Iran,” Comparative Clinical Pathology, vol. 22, no. 3, pp. 1–5, 2012. View at Publisher · View at Google Scholar · View at Scopus
  148. M. Salehi- Surmaghi, Medicinal Plants and Phytotherapy, Tehran University of Medical Sciences, Tehran, Iran, 2010.
  149. A. N. Assimopoulou, S. N. Zlatanos, and V. P. Papageorgiou, “Antioxidant activity of natural resins and bioactive triterpenes in oil substrates,” Food Chemistry, vol. 92, no. 4, pp. 721–727, 2005. View at Publisher · View at Google Scholar · View at Scopus
  150. A. Rajaei, M. Barzegar, A. M. Mobarez, M. A. Sahari, and Z. H. Esfahani, “Antioxidant, anti-microbial and antimutagenicity activities of pistachio (Pistachia vera) green hull extract,” Food and Chemical Toxicology, vol. 48, no. 1, pp. 107–112, 2010. View at Publisher · View at Google Scholar · View at Scopus
  151. M. S. Sharifi, D. Ebrahimi, D. B. Hibbert, J. Hook, and S. L. Hazell, “Bio-activity of natural polymers from the genus pistacia: a validated model for their antimicrobial action,” Global Journal of Health Science, vol. 4, no. 1, pp. 149–161, 2012.
  152. M. S. Sharifi and S. L. Hazell, “Isolation, analysis and antimicrobial activity of the acidic fractions of Mastic, Kurdica, Mutica and Cabolica gums from genus Pistacia,” Global Journal of Health Science, vol. 4, no. 1, pp. 217–228, 2011.
  153. A. Shojaei, K. Javidnia, and R. Miri, “Antioxidant and antimicrobial activity of ethanolic extract of Pistacia khinjuk (anacardiaceae),” European Journal of Pharmacology, vol. 668, pp. e43–e44, 2011.
  154. M.-L. He, H.-Q. Yuan, A.-L. Jiang et al., “Gum mastic inhibits the expression and function of the androgen receptor in prostate cancer cells,” Cancer, vol. 106, no. 12, pp. 2547–2555, 2006. View at Publisher · View at Google Scholar · View at Scopus
  155. P. Moulos, O. Papadodima, A. Chatziioannou, H. Loutrari, C. Roussos, and F. N. Kolisis, “A transcriptomic computational analysis of mastic oil-treated Lewis lung carcinomas reveals molecular mechanisms targeting tumor cell growth and survival,” BMC Medical Genomics, vol. 2, pp. 1–15, 2009. View at Publisher · View at Google Scholar · View at Scopus
  156. M. Tounes, C. Abdennour, and N. Houaine, “Influence of Pistacia lentiscus oil on serum biochemical parameters of domestic rabbit Oryctolagus cuniculus in mercury induced toxicity,” European Journal of Scientific Research, vol. 24, no. 4, pp. 591–600, 2008. View at Scopus