About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 620719, 21 pages
http://dx.doi.org/10.1155/2013/620719
Review Article

Development of Microencapsulation Delivery System for Long-Term Preservation of Probiotics as Biotherapeutics Agent

1Department of Pharmaceutics, S.S.R. College of Pharmacy, Sayli-Silvassa Road, Sayli, Silvassa, Dora and Nagar Haveli 396230, India
2Hemchandracharya North Gujarat University, Patan, Gujarat 384265, India
3APMC College of Pharmaceutical Education and Research, Motipura, Himmatnagar, Sabarkantha 383001, India

Received 17 April 2013; Accepted 21 June 2013

Academic Editor: Salvatore Sauro

Copyright © 2013 Himanshu K. Solanki et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The administration of probiotic bacteria for health benefit has rapidly expanded in recent years, with a global market worth $32.6 billion predicted by 2014. The oral administration of most of the probiotics results in the lack of ability to survive in a high proportion of the harsh conditions of acidity and bile concentration commonly encountered in the gastrointestinal tract of humans. Providing probiotic living cells with a physical barrier against adverse environmental conditions is therefore an approach currently receiving considerable interest. Probiotic encapsulation technology has the potential to protect microorganisms and to deliver them into the gut. However, there are still many challenges to overcome with respect to the microencapsulation process and the conditions prevailing in the gut. This review focuses mainly on the methodological approach of probiotic encapsulation including biomaterials selection and choice of appropriate technology in detailed manner.

1. Introduction

As described by the Food and Agriculture Association of the United Nations (FAO) and World Health Organization (WHO), probiotic are a group of live microorganisms that, when administered in adequate amounts, confer a health benefit on the host [1]. Probiotic is a term that means “for life” and defined as “live microorganisms that beneficially affect the host’s health by improving its microbial balance” [2]. Lactobacillus and Bifidobacteria are the two most common types of microbes which are extensively used as probiotics [2, 3]. The use of probiotic bacterial culture stimulates the growth of preferred microorganisms, crowds out potentially harmful bacteria, and reinforces the body’s natural defense mechanisms [4]. Some bacterial strains that have been widely discussed in the literature are outlined in Table 1 along with their therapeutic uses.

tab1
Table 1: Clinical studies of appropriate probiotic strains which have convincingly demonstrated their therapeutic effect.

Lifestyle and eating habits play an important role in the overall health of individuals. Recently the use of probiotics for health benefits has increased, and hence it has created a huge market worldwide [5]. In the development of effective and safe encapsulated product, it is essential to maintain the adequate number of viable cells during the shelf life of the product as well as during the gastrointestinal (GI) tract transit after consumption [610].

Normally, any probiotic product must contain at least 106–107 cfu of viable probiotic bacteria per g of the product at the time of its consumption to exert beneficial effects on human health [1]. To overcome difficulty during development, microencapsulation technique is utilized to increase the viabilitys; of probiotic also several studies are carried out to investigate their role in different conditions in probiotic exposed [1118].

1.1. Purpose of Microencapsulation

The purpose of microencapsulation of probiotic is to protects certain compound or biological cells against surrounding environment which destruct the core. It protects the bacteria from heat, oxygen, and moisture and also improves the flow properties during formulation development. It can be used for different drug delivery system and nowadays to apply for the encapsulation of probiotics in food product [1921].

The core material is encapsulated in the food grade matrix type coating material. In the food industry, these materials form a barrier to protect the core material against the GI environment using different encapsulation systems as shown in Figure 1 [21].

620719.fig.001
Figure 1: Schematic representation of encapsulation systems: (a) reservoir type, (b) matrix type, and (c) coated matrix type.

Finally, microencapsulation gives structure and innovative system to the core material for the probiotic food product. Physicochemical properties of coating material affect the viability of encapsulated probiotic cells. Type and concentration of coating material, particle size, initial cell number, and bacterial strains are important during formulation [22].

1.2. Structure of Microcapsule

Microcapsules, formed by using natural materials like sugar, gums, protein, lipid, and synthetic or modified polymers, can be formulated as gel beads or in dried powder form. The formed smooth or irregular microcapsules lack their encapsulation efficiency because of the presence of pores [23]. The coating material is classified on the basis of the matrix material such as with a single wall material like sodium alginate, or a mixture material such as xanthan, gellan gum, alginate, and Chitosan. Coating material also affects the structure of microcapsule. Generally sodium alginate produces microcapsules with smooth surface [24], while slow gelling property of milk results in formation of irregular shaped capsule [25, 26]. Different shapes of microspheres are shown in Figure 2.

620719.fig.002
Figure 2: Various forms of microcapsule used in the food industry [19].
1.3. Advantages of Microencapsulated Probiotics

(i)It protects and enhances survival of bacteria in foods.(ii)It allows entrapped probiotic microorganisms to be incorporated into dairy products such as yogurt, cheese, and frozen milk product.(iii)About 40% of Lactobacilli survive in frozen ice cream when entrapped in calcium alginate sphere than free cells [27].(iv)The encapsulation of Bifidobacteria significantly improves survival, compared to free cells, throughout storage from 43%–44% to 50%–60% in frozen dairy product [28].(v)Microencapsulated form of B. pseudolongum exhibits improvement of survival in a simulated gastric environment when compared to free viable microorganisms [29, 30].

2. Factor Affecting Microencapsulation Effectiveness of Probiotics

For evaluation of effectiveness of probiotic encapsulation process different parameters are considered such as viability maintenance after encountering detrimental environmental conditions, cell release/recovery ability, and hardening time (time needed for capsule formation). Different factors affecting the microencapsulation are discussed below [23, 31].

2.1. Effect of Various Biomaterials on Viability of Probiotics

A wide variety of biomaterials have been used by researchers in order to check their effects on the process of microencapsulation as well as on the viability of probiotic bacteria. Supported report is shown in Table 2.

tab2
Table 2: Supported report provides evidence that encapsulation of probiotics results in increased viability.
2.2. Capsule Characteristics with Respect to the Surrounding Environment

Selection of capsular material with respect to the surrounding environment is very important. When the microcapsule is formed using alginate and different combination, leaks the calcium ions from alginate capsule structure leading to its decomposition. Hence it should be avoided from the highly acidic environment. If probiotic cells are to be targeted in the small intestine, then selection of capsule material(s) should be such that their decomposition occurs after subjecting them to the small intestine pH or pancreatic enzymes. If the beads are to be retained in the large intestine, it is preferable to be tolerant against the pancreas and small intestine conditions. However, this is not always easily achievable due to the restrictions in the chemical characteristics of encapsulation materials. Generally, all the capsules must be resistant to the acidic conditions of gastric juices [32]. Sometimes it is necessary to use special types of hydrophobic components of encapsulation to make the beads tolerant against moisture.

2.3. Coating of the Capsule

Efficient coating of capsule improves its physicochemical property. For example, shell coating on the alginate capsules makes them resistant to the chelating agents of calcium ions and also increases their mechanical strength.

2.4. Concentration of Capsule Making Solution and Bead Diameter

Concentration of capsule making solution and final bead diameter are factors which affect encapsulation efficiency. As bead diameter increases, it causes inappropriate mouth feel and flavor. Furthermore, increasing capsule diameter decreases digestibility by pancreatic enzyme.

2.5. Environmental Conditions

Physiology of the GI tract is important during the probiotic encapsulation process (Table 3) [205].

tab3
Table 3: Relative pH and transit time at various locations within GIT.

Environmental factors are also found to reduce encapsulation effectiveness.

2.6. Modification of Capsule Materials

Chemical modification of capsular material improves encapsulation effectiveness. Structural modification of the capsule materials is by direct structural changes and/or addition of special additives.

2.7. Initial Concentration of Microbial Cells

As concentration of microbial cells in the encapsulation solution increases, the number of entrapped cells in each bead (cell load) increases and, as a result, quantitative efficiency of encapsulation increases. If cell load exceeds the limit, softening of capsule structure occurs.

2.8. Conditions of Processing Factors

Microencapsulation processes such as freeze drying, spray drying, micronization, and storage conditions are employed in order to avoid injuries to the beads and contained cells.

3. Formulation Technology for Microencapsulation of Probiotics

The presence of diverse condition in human digestive system makes designing of the probiotic release system difficult. Hence, highly tailored system like specific target location system is required [205].

Probiotic cell is commonly encapsulated by extrusion, emulsion, and spray drying. In these methods, probiotic bacteria are entrapped in the gel matrix using different gel forming mechanisms [206]. Whereas probiotic are living cells, the condition for implementation technology are designed to maintain cell viability, and solvents involved in the encapsulation technology must be nontoxic [207]. In Figure 3, it the different types of particles obtained (matrix or reservoir type) by each method can be seen Figure 3.

620719.fig.003
Figure 3: Probiotic encapsulation technologies: size range provided by each technique.

The ability of microorganisms to survive and multiply in the host strongly influences their probiotic benefits.

Microencapsulation techniques are divided into two parts:(i)encapsulation process, (ii)drying process.

3.1. Encapsulation Process

There are two basic techniques of microencapsulation that are used for encapsulation of probiotic bacteria. These encapsulated probiotics are then used for biomass production and also in various food products as functional food ingredients.

Depending on the method used, the two methods are extruded or droplet method and emulsion or two phase system method. From various studies it has been concluded that encapsulation by both of these methods has increased the viability of probiotic bacteria more than 80%.

3.1.1. Extrusion Technique for Microencapsulation

It is the oldest common technique for probiotic formulation [208]. Extrusion method in the case of alginate capsule consists of the following stages: preparation of hydrocolloid solution and the addition of probiotic cell in hydrocolloid solution to form cell suspension. These cells suspension is passed through the syringe needle to form droplets which are directly dripped into the hardening solution containimg cations like calcium. When the droplets come in contact with hardening solution, alginate polymers surround the core to form a three-dimensional lattice structure by cross-linking calcium ions as shown in Figure 4 [22, 29, 146, 209, 210].

620719.fig.004
Figure 4: Extrusion technologies: simple needle droplet generator that usually is air driven (a) and pinning disk (b). The probiotic cells are added to the hydrocolloid solution and dripped through a syringe needle or a nozzle spray machine in the form of droplets which are allowed to free fall into a hardening solution such as calcium chloride.

Thereby entrapping the core material separated from liquid bath and is dried using a suitable technology. Formation of gel by alginate solution (0.6%) would be possible if calcium ion (0.3 M) is present [193]. Usually, alginate is used in the range of 1-2% and 0.005–1.5 M calcium chloride concentration. Generally, the diameter of forming beads in this method (2–5 mm) is larger than those formed in the emulsion method. Bead diameter is affected by concentration and viscosity of alginate solution and distance between the syringe and hardening solution, and diameter of extruder orifice affects the size of bead [156]. Bead diameter decreases along with increasing concentration and viscosity of the encapsulation solution. Using low glucuronic alginate, formation of beads with smaller diameter is possible [211]. For production of alginate capsule with Chitosan coat, alginate solution is dripped into the hardening batch containing calcium chloride and Chitosan [201, 212]. Soaking of alginate beads in the Chitosan solution (0.1%, pH 6.5) for 20 min forms beads with good properties [12].

Review work on this technique for probiotic microencapsulation is listed in Tables 4 and 5.

tab4
Table 4: Advantage and disadvantages of extrusion technique.
tab5
Table 5: Different probiotic strain, biomaterial, and size of microcapsule encapsulated by extrusion technique.
3.1.2. Emulsion Technique for Microencapsulation

It is successfully applied for the microencapsulation of lactic acid bacteria [170, 213]. In this method, small volume of cell/polymer slurry (dispersed phase) is added to the large volume of vegetable oil (as a continuous phase) such as soy oil, sunflower, corn, and light paraffin oil [174]. After the formation of emulsion, cross-linking is required to form gels. Gelification is done by different mechanisms like ionic, enzymatic, and interfacial polymerization as discussed next. Reported works on this technique are listed in Table 6.

tab6
Table 6: Different probiotic strain, biomaterial, and size of microcapsule encapsulated by emulsion technique.

It can be easily scaled up, and the diameter of producing beads is considerably smaller (25 μm–2 mm). It is costly due to need of vegetable oil, surfactant, and emulsifier (Tween80 (0.2%)) for encapsulation in an emulsion [27, 175].

3.1.3. Emulsification Ionic Gelification

Emulsification is a chemical technique to encapsulate probiotic using alginate, carrageenan and pectin as an encapsulating material (Figure 5).

620719.fig.005
Figure 5: Schematic presentation of emulsification procedure: a small volume of the cell polymer suspension (i.e., the discontinuous phase) is added to a large volume of vegetable oil (i.e., the continuous phase). The mixture is then homogenized to form a water-in-oil emulsion. Once the water-in-oil emulsion is formed, the water-soluble polymer must be insolubilized to form tiny gel particles within the oil phase.

Once W/O emulsion is formed, water soluble polymer becomes insoluble after addition of ions of calcium chloride, by means of cross-linking forming gel particles in the oil phase. The smallest particle of the aqueous phase in W/O phase emulsion will lead to the formation of beads with smaller diameters. Agitation rate and type of emulsifier also affects the diameter of the beads [29, 214]. Microbeads produced by this technique are recovered by membrane filtration technology [29].

3.1.4. Emulsification and Enzymatic Gelification

In some countries, use of coating materials such as κ-carrageenan, gellan gum, or xanthan is not allowed in dairy product [141]. So milk protein is used to encapsulate probiotics by means of an enzyme-induced gelation [215, 216]. Milk proteins have excellent gelation properties and are a natural vehicle for probiotics [217]. This method gives water insoluble and spherical particles [215]. This method is an example of encapsulation by means of rennet gelation as shown in Figure 6, which is based on the principle of using dairy proteins which have been put in contact with rennet at low temperature.

620719.fig.006
Figure 6: Schematic presentation of the microencapsulation of probiotic cells by means of rennet-gelation of milk proteins: The principle of the technique is based on using dairy proteins which have been put in contact with rennet at low temperature. This allows keeping a liquid system where κ-casein is cleaved by the enzyme. After that, dairy proteins have been emulsified in a cold oil to form water in oil emulsion. Thermal induction of enzymatic coagulation allows proteins flocculation and provides microparticles where probiotics are dispersed in coagulated dairy proteins.

This allows keeping a liquid system where κ-casein is cleaved by the enzyme. After that, dairy proteins are emulsified in a cold oil to form water in oil emulsion. Thermal induction of enzymatic coagulation allows protein flocculation and provides microparticles.

3.1.5. Emulsification and Interfacial Polymerization

This technique is a single step. It requires formation of an emulsion in which discontinuous phase contains an aqueous suspension of the cell and continuous phase contains organic solvent. To initiate the polymerization reaction, biocompatible agent which is soluble in the continuous phase is added. The drops of probiotic cell are coated to form thin and strong membrane [194]. Productivity of microorganisms is improved by interfacial polymerization in fermentation [218].

3.2. Drying Process for Microencapsulation

Drying improves stability of the encapsulated culture during prolonged storage. But the drying process causes some injuries to the microbeads, release of some cells, and reducing the viability of cells. Spray drying, freeze drying, and fluidized bed drying are common drying technology of probiotics used in industry and are summarized next [219].

3.2.1. Spray Drying

A solution containing probiotic living cells and the dissolved polymer matrix is prepared by using gum Arabic and starches because they tend to form a spherical microparticle during the drying process (Figure 7) [22, 209, 210].

620719.fig.007
Figure 7: Schematic presentation of the spray-drying procedure: The solution is pressured and then atomized to form a “mist” into the drying chamber. The hot gas (air or nitrogen) is blown into the drying chamber too. This hot gas allows the evaporation of the solvent. The capsules are then transported to a cyclone separator for recovery.

In drying process, probiotic cell loses viability due to physical injury to microencapsule and heat generation (Table 8) [23]. So the loss of probiotic cell can be reduced by using proper cryoprotectant during freeze drying, optimizing the inlet and outlet temperature for spray drying [206] (Table 7).

tab7
Table 7: Different probiotic strain, biomaterial, inlet/outlet temperature, and size of microcapsule encapsulated by spray drying techniques.
tab8
Table 8: Advantage and disadvantages of spray drying techniques.

Table 7 Presents the coating materials and temperatures used in this technique for probiotic microencapsulation.

3.2.2. Freeze Drying

In this technique, the solvent is frozen and removed via sublimation [220]. Freezing causes damage to the cell membrane due to ice crystal formation and also imparts stress condition by high osmolarity. It has been traditionally used to stabilize probiotic bacteria, but the combination of freeze-drying and encapsulation is relatively new concept. Recently, Lactobacillus F19 and Bifidobacterium Bb12 cells were first encapsulated into enzymatically gelled sodium caseinate, and gel particles were freeze-dried to study the storage stability [17]. They reported better postdrying survival and storage viability for encapsulated cell compared to free cell. In other recent work, gelatinized starch and lecithin were incorporated into the alginate microcapsule containing probiotic organisms in encapsulated form, and beads were freeze-dried to evaluate the storage stability at different temperature. It was shown that encapsulated bacteria had much better stability at 23°C for 12 weeks, and lecithin helped in obtaining higher efficiency and more stability [221].

3.3. The Other Drying Method Used for Microencapsulation

The other drying techniques are listed below.

3.3.1. Fluidized Bed Drying

In this process, cell suspension is sprayed and dried on inert carriers using a Wurster-based fluidized bed system (Table 9) [222].

tab9
Table 9: Advantage and disadvantages of fluidized bed drying.
3.3.2. Vacuum Drying

Vacuum drying is suitable for heat sensitive probiotics because drying takes place at lower temperatures, and oxidation reaction can also be minimized, while disadvantage is batch operation and longer drying time which can be minimized by using a continuous vacuum dryer where cost is one-third of a freeze dryer, and the material can be dried at 1–4% moisture level at 40°C within 5–10 min [223].

3.4. Another Technique for Encapsulation
3.4.1. Spray Freeze Drying

In this technique, the probiotic cell solution is atomized into a cold vapor phase of a cryogenic liquid such as liquid nitrogen, which generates a dispersion of frozen droplets. These are dried in freeze dryer (Table 10) [200, 209, 210, 224].

tab10
Table 10: Advantages and Disadvantages of spray freeze drying.
3.4.2. Encapsulation by Coating and Agglomeration

In this method, solid form of core material is kept in motion in a specially designed vessel (Figure 8) [206, 210].

620719.fig.008
Figure 8: Schematic presentation of the spray coating technology.

It is easy to scale up hence used in the encapsulation of probiotics for nutraceutical. The Canadian private company developed and patented a microencapsulation technique known as Probiocap [225]. The process is based on coating freeze-dried Lactobacillus with fatty acids. This technology allows strains to resist the harsh effect of temperature, gastric acidity, and compression. Danish-Korean Company patented a duel coating technology for Lactobacillus, which is marketed under the brand name Duaolac. The first layer of coating is made of soy peptide, and the second layer is made of cellulose and gum.

3.4.3. Coacervation Technique for Encapsulation

In coacervation process, colloidal particle is separated from a solution and deposited around core material. It is used in encapsulating flavor oil but is also used in fish oil, vitamin, enzyme, nutrients, and preservatives (Table 11). It is a three-step process comprising of phase separation, deposition, and solidification [26]. In the first step, coating material containing one or more polymer goes through a phase separation process and forms a coacervate. Suspended or emulsified form of core material remains, and as soon as wall material particles coalesce, it causes a decrease in surface area and total free interfacial energy of the system. In this process, coacervate nuclei adsorption to the surface of core material and form uniform layer around the core particles. Finally solidification of coating material is done by cross-linking using chemical, thermal, or enzymatic method. The formed microparticles are then collected by filtration or mild centrifugation followed by drying [26, 193].

tab11
Table 11: Advantages and disadvantages of coacervation technique.

Glutaraldehyde, cross-linking agent, is not applied in the food industry due to toxicity issues; thus cross-linking enzyme transglutaminase is used [26, 226].

3.4.4. Cocrystallization

It is mainly used for the fruit juices, essential oils, flavor, and brown sugar [193]. In this method, core material is dispersed in supersaturated sucrose solution maintained at high temperature. The heat is gradually released allowing the solution to crystallize with the core material. Finally the product is dried and sieved as per the particle size requirement (Table 12) [227].

tab12
Table 12: Advantages and disadvantages of cocrystallization.
3.4.5. Molecular Inclusion

This method involves entrapment of smaller molecule inside the hollow cavity of a larger molecule [193, 228]. Cyclodextrins are commonly used but restricted in the certain countries. In controlled release mechanism, core material is released when displaced by more favorable substrates. It is reported that β-cyclodextrin molecules containing core compound are highly heat stable, can tolerate up to 200°C, and are highly resistant to chemical degradation [146, 228].

Some of the major limitations of this molecular inclusion technology are low payload [146] and high cost of raw material [193].

3.4.6. Centrifugal Extrusion Technique

In this technique, core and coating materials are pumped through a separate tube to the surface of rotating cylinder. With the rotational motion of the cylinder, both materials are mixed and extruded as a fluid rod which is broken by the centrifugal force. The coating over the core material forms capsules caused by the difference in surface tension. Finally, formed capsules are placed on a moving bed of starch, which absorbs excess moisture and cushion the impact [26].

It is used in the food industry to encapsulate ingredients such as a flavor and seasoning [26], aspartame, vitamin, and methionine [19]. It produces smaller particles with a wide range of coating materials such as gelatin, alginate, carrageenan, starches, fatty acid, and waxes [19, 26].

The major advantage of this method is slower release properties of the capsule and higher throughput rate in comparison to the spray drying process [146].

4. Biomaterials Used for Microencapsulation of Probiotics

This section aims to provide a short overview of commonly used bilateral to encapsulate probiotic cells.

Definition. “Any natural material or not, which is in contact with a living structure and is intended to act with biological system.” It includes natural and synthetic polymerswhich are directly in contact with living cell so they should be biocompatible and biodegradable [229]. Encapsulation of probiotics in biodegradable polymer matrix has a number of advantages. Cryo- and osmoprotection agent can be incorporated into the matrix which enhances the survival of cell during storage and processing. Finally, microcapsules are dried; surface coating is altering the aesthetic and sensory properties of product and provides a high level of protection to the cells. It helps in the delayed release of cell by maintaining the dissolution properties of the coating layer. Microcapsule produced by using polymer is easy on a lab scale. But the scaling process is very difficult and processing cost is very high.

4.1. Use of Alginate System for Encapsulation of Probiotics

Alginate is a naturally derived polysaccharide extracted from various species of algae and composed of two monosaccharide units: -L-guluronic acid (G) and -D-mannuronic acid (M) linked from (1–4) glycosidic bond [230, 231]. M/G ratios determine the technological functionality of alginate. The gel strength depends upon high proportion block G. High temperature (60°C to 80°C) is needed to dissolve alginate in water. Alginate gels are insoluble in acidic media [6, 165, 232, 233]. Usually alginate is used in concentration range of 0.5–4% (Table 13) [27].

tab13
Table 13: Advantages and disadvantages of alginate system.
4.2. Use of Chitosan for Encapsulation of Probiotics

Chitosan is a linear polysaccharide with negative charge arising from its amine groups obtained by deacetylation of chitin. It can be isolated from crustacean shells, insect cuticles, and the membranes of fungi. It is a copolymer of two monomer residues anhydro-N-acetyl-D-glucosamine and anhydrous-D-glucosamine. It is soluble at pH < 6 and forms gel structure by ionotropic gelation. Chitosan can further polymerize by means of cross-linking formation in the presence of anions and polyanions [202]. It is used for coating of gelatin capsules, because its efficiency for the increasing viability of probiotic cells is not satisfactory; it is most often used as coat/shell but not capsule.

4.3. Use of Starch for Encapsulation of Probiotics

Starch consists of D-glucose unit joint together with glycosidic bonds. It has been used as a material for coating of alginate capsules. High-amylose corn starch (HACS) can be applied for enhancing functions of capsule or shell/coat formation [183]. Lyophilized corn starch (LCS) has been reported to be used as capsule-forming material; however, it decomposes after being subjected to pancreatic enzymes [234]. Resistant starch (RS) is not degraded by the pancreatic amylase. His specification apart from giving the microbeads good enteric delivery characteristic also gives them probiotic functionality as they can be used by the probiotic bacteria in the intestine [235]. The incorporation of Hi-Maize starch improved the encapsulation of viable bacteria compared with the bacteria encapsulated without starch [140, 236].

4.4. Use of Xanthan-Gellan Gum for Encapsulation of Probiotics

Gellan gum is an anionic polysaccharide derived from Sphingomonas elodea which is constituted of a repeating unit of four monomers that are glucose, glucuronic acid, glucose, and rhamnose [22]. Xanthan is an exopolysaccharide derived from Xanthomonas campestris. The optimum mixing proportion for xanthan-gellan gum is 1 : 0.75 [32]. In contrary with alginate, this mixture is resistant to acidic conditions [32, 181].

4.5. Use of κ-Carrageenan for Encapsulation of Probiotics

Carrageenan is polymer having linear structure consisting of D-galactose units alternatively linked by α-(1–3) and β (1–4) bonds. Types of carrageenan are kappa (κ), iota (ι), and lambda (λ) [237]. Monosulfated κ-carrageenan and bisulfated ι-carrageenan contain oxygen bridge between 3 and 6 of the D-galactose, which is responsible for the conformational transition and gelatin. The λ-carrageenan is trisulfated and does not have this bridge required for gel formation [238]. Carrageenan gelatin is induced by temperature changes. A rise in temperature (60–80°C) is required to dissolve it, and gelation occurs by cooling to room temperature [238, 239], and then microparticles are stabilized by adding potassium ion [29]. It is commonly used as a food additive; its safety has been approved by several government agencies including FDA, Codex Alimentarius, and the joint FAO/WHO food additive [240]. It has good capacity to form gels that can entrap the cell. However, the cell slurry should be added to the heat sterilized suspension between 40–45°C; otherwise the gel hardens at room temperature [241]. Usually it is used in concentration such as 2–5% [242]. The encapsulation of probiotic cell in κ-carrageenan beads keeps the bacteria in a viable state [169], but the produced gels are brittle and do not withstand stresses [22].

4.6. Use of Various Proteins-Based Coating for Encapsulation of Probiotics
4.6.1. Gelatin

Gelatin is used as a thermally reversible gelling agent for encapsulation. Because of its amphoteric nature, it is an excellent candidate to incorporate with anionic-gel-forming polysaccharides, such as gellan gum.

It is frequently used in food and pharmaceutical industries [243]. It is a protein derived by partial hydrolysis of collagen of animal origin. It has versatile functional properties, and forms a solution of high viscosity in water which set to a gel on cooling.

4.6.2. Milk Protein

Milk proteins are natural vehicles for probiotic cells, and owing to their structural and physicochemical properties, they can be used as a delivery system [217]. The results of these studies are promising, and using milk proteins is an interesting way because of their biocompatibility [217].

4.6.3. Whey Protein

It easily heats denatured which affect aggregation and reduction in emulsion stability. Whey proteins are heat sensitive and show inferior surface activities. Whey protein appears as a potential candidate as coating agent as it is entirely biodegradable and frequently used in many types of food products.

The protein matrixes have different cell release properties than the other microencapsulation methods (polymer or fat based). Thus, applications are also extended to other foods for protection during processing as well as stability during storage but also in nutraceutical for protection and soil release in the GI tract [244].

4.7. Use of Cellulose Acetate Phthalate (CAP) for Encapsulation of Probiotics

Because of its safe nature, CAP is used for controlling drug release in the intestine [23]. It is not soluble at pH less than 5 but it is soluble at pH higher than 6 [236]. This property is essential for probiotic encapsulation because the bilateral must not dissolve in the stomach but only in the gut. The disadvantage of CAP is that it cannot form gel beads by ionotropic gelation so capsules have been developed by emulsification. CAP is widely used as a coating agent because it provides better protection for microorganisms in simulated GI conditions [191].

4.8. Criteria to Select a Proper Encapsulation Technology

When one chooses encapsulation as a technology to deliver the desired benefits, one should consider carefully the design of the encapsulation.(i)What are the physicochemical characteristics of the active?(ii)Which processing conditions are used during food production or processing?(iii)How will the encapsulates be stored prior to use?(iv)What will be the storage conditions of the food product containing the encapsulates prior to consumer use?(v)Which particle size and density are needed to have it incorporated properly in the food product?(vi)What are the trigger(s) and mechanism(s) of release?(vii)What are the cost constraints?

5. Conclusion and Future Perspective

In the present article, principle, methods, and materials used in the encapsulation of probiotic cells are discussed. The advances in this field have been tremendous with nutraceutical and food ingredients. However, as to the microencapsulation of live probiotic bacterial cells, the technology seems to be not well developed. The delivery of viable microencapsulated probiotic bacteria will become important in near future. Any type of triggers can be used to prompt the release of encapsulated ingredients, such as pH changes, mechanical stress, temperature, enzymatic activity, time, and osmotic force. The challenges are to select the appropriate encapsulation technique and encapsulating materials. One important challenge for cell encapsulation is the largest size of microbial cells (typically 1–4 μm) or particles of freeze-dried culture (more than 100 mm). This characteristic limits cell loading for small capsules or, when large size capsules are produced, can negatively affect the textural and sensorial properties of food products in which they are added. In almost all cases, gel entrapment using natural polymers, such as calcium alginate, carrageenan, gellan gum, and Chitosan, is favored by researchers. However, despite promising on a laboratory scale, the developed technologies for producing gel beads still present serious difficulties for large-scale production of food grade microencapsulated microorganisms.

Another major challenge is to improve the viability of probiotics during the manufacturing processes, particularly heat processing. Consequently, there appears to be no commercial probiotic products available that are stable at high temperatures. Keeping in view the importance of producing thermoresistant probiotic microorganisms, as well as the interests of food and pharmaceutical companies, new approaches are needed in further research. There are at least two options: (1) discovering new strains of probiotic bacteria that are naturally heat stable or that have been genetically modified and (2) developing an encapsulation system that effectively acts like an “insulation material.”

Conflict of Interests

The authors have no conflict of interests.

Acknowledgments

The authors wish to thank the reviewers for making valuable comments on this paper. They also wish to thank the Dr. Girish K. Jani, Principal, S.S.R College of Pharmacy, Silvassa, for providing digital library for referencing.

References

  1. FAO/WHO, Guidelines for the Evaluation of Probiotics in Food, Food and Agriculture Organization of the United Nations/World Health Organization, London, UK, 2002.
  2. R. Fuller, “Probiotics in man and animals,” Journal of Applied Bacteriology, vol. 66, no. 5, pp. 365–378, 1989. View at Scopus
  3. S. Rokka and P. Rantamäki, “Protecting probiotic bacteria by microencapsulation: challenges for industrial applications,” European Food Research and Technology, vol. 231, no. 1, pp. 1–12, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Dunne, “Adaptation of bacteria to the intestinal niche: probiotics and gut disorder,” Inflammatory Bowel Diseases, vol. 7, no. 2, pp. 136–145, 2001. View at Scopus
  5. R. Agheyisi, “Ga-121 probiotics: ingredients, supplements, foods,” Tech. Rep., Business Communication Company, Norwalk, Conn, USA, 2005.
  6. S. K. Hood and E. A. Zottola, “Effect of low pH on the ability of Lactobacillus-acidophilus to survive and adhere to human intestinal cells,” Journal of Food Science, vol. 53, no. 5, pp. 1514–1516, 1988.
  7. F. A. M. Klaver, F. Kingma, and A. H. Weerkamp, “Growth and survival of bifidobacteria in milk,” Netherlands Milk and Dairy Journal, vol. 47, no. 3-4, pp. 151–164, 1993. View at Scopus
  8. N. P. Shah and W. E. V. Lankaputhra, “Improving viability of Lactobacillus acidophilus and Bifidobacterium spp. in yogurt,” International Dairy Journal, vol. 7, no. 5, pp. 349–356, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. D. B. Hughes and D. G. Hoover, “Bifidobacteria: their potential for use in American dairy products,” Food Technology, vol. 45, no. 4, pp. 74–83, 1991.
  10. C. Desmond, C. Stanton, G. F. Fitzgerald, K. Collins, and R. P. Ross, “Environmental adaptation of probiotic lactobacilli towards improvement of performance during spray drying,” International Dairy Journal, vol. 12, no. 2-3, pp. 183–190, 2012. View at Scopus
  11. A. K. Anal and H. Singh, “Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery,” Trends in Food Science and Technology, vol. 18, pp. 240–251, 2007.
  12. W. Krasaekoopt, B. Bhandari, and H. Deeth, “The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria,” International Dairy Journal, vol. 14, no. 8, pp. 737–743, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Capela, T. K. C. Hay, and N. P. Shah, “Effect of cryoprotectants, prebiotics and microencapsulation on survival of probiotic organisms in yoghurt and freeze-dried yoghurt,” Food Research International, vol. 39, no. 2, pp. 203–211, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. K. N. Chen, M. J. Chen, and C. W. Lin, “Optimal combination of the encapsulating materials for probiotic microcapsules and its experimental verification (R1),” Journal of Food Engineering, vol. 79, pp. 313–320, 2006.
  15. N. T. Annan, A. D. Borza, and L. T. Hansen, “Encapsulation in alginate-coated gelatin microspheres improves survival of the probiotic Bifidobacterium adolescentis 15703T during exposure to simulated gastro-intestinal conditions,” Food Research International, vol. 41, no. 2, pp. 184–193, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. G. K. Gbassi, T. Vandamme, S. Ennahar, and E. Marchioni, “Microencapsulation of Lactobacillus plantarum spp in an alginate matrix coated with whey proteins,” International Journal of Food Microbiology, vol. 129, no. 1, pp. 103–105, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Heidebach, P. Först, and U. Kulozik, “Influence of casein-based microencapsulation on freeze-drying and storage of probiotic cells,” Journal of Food Engineering, vol. 98, no. 3, pp. 309–316, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. O. Sandoval-Castilla, C. Lobato-Calleros, H. S. García-Galindo, J. Alvarez-Ramírez, and E. J. Vernon-Carter, “Textural properties of alginate-pectin beads and survivability of entrapped Lb. casei in simulated gastrointestinal conditions and in yoghurt,” Food Research International, vol. 43, no. 1, pp. 111–117, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. B. F. Gibbs, S. Kermasha, I. Alli, and C. N. Mulligan, “Encapsulation in the food industry: a review,” International Journal of Food Sciences and Nutrition, vol. 50, no. 3, pp. 213–224, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. C. P. Champagne and K. Kailasapathy, “Encapsulation of probiotics,” in Delivery and Controlled Release of Bioactives in Foods and Nutraceuticals, N. Garti, Ed., pp. 344–369, Woodhead, Cambridge, UK, 2008.
  21. N. J. Zuidam and E. Shimoni, “Overview of microencapsulates for use in food products or processes and methods to take them,” in Encapsulation Technologies for Active Food Ingredients and Food Processing, N. J. Zuidam and V. Nedovic, Eds., pp. 3–29, Springer, New York, NY, USA, 2009.
  22. M. J. Chen and K. N. Chen, “Applications of probiotic encapsulation in dairy products,” in Encapsulation and Controlled Release Technologies in Food Systems, J. M. Lakkis, Ed., pp. 83–107, Wiley-Blackwell, New York, NY, USA, 2007.
  23. A. Mortazavian, S. H. Razavi, M. R. Ehsani, and S. Sohrabvandi, “Principle’s and method of microencapsulation of probiotic microorganisms,” Iranian Journal of Biotechnology, vol. 5, no. 1, pp. 1–18, 2007.
  24. P. Muthukumarasamy, P. Allan-Wojtas, and R. A. Holley, “Stability of Lactobacillus reuteri in different types of microcapsules,” Journal of Food Science, vol. 71, no. 1, pp. M20–M24, 2006. View at Scopus
  25. A. Ainsley Reid, J. C. Vuillemard, M. Britten, Y. Arcand, E. Farnworth, and C. P. Champagne, “Microentrapment of probiotic bacteria in a Ca2+-induced whey protein gel and effects on their viability in a dynamic gastro-intestinal model,” Journal of Microencapsulation, vol. 22, no. 6, pp. 603–619, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. K. G. H. Desai and H. J. Park, “Recent developments in microencapsulation of food ingredients,” Drying Technology, vol. 23, no. 7, pp. 1361–1394, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Y. Sheu and R. T. Marshall, “Microencapsulation of lactobacilli in calcium alginate gels,” Journal of Food Science, vol. 54, pp. 557–561, 1993.
  28. K. M. K. Kebary, S. A. Hussein, and R. M. Badawi, “Improving viability of Bifidobacteria and their effect on frozen ice milk,” Egyptian Journal of Dairy Science, vol. 23, pp. 319–337, 1998.
  29. W. Krasaekoopt, B. Bhandari, and H. Deeth, “Evaluation of encapsulation techniques of probiotics for yoghurt,” International Dairy Journal, vol. 13, no. 1, pp. 3–13, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. H. L. Truelstrup, P. M. Allan-Wojtas, Y. L. Jin, and A. T. Paulson, “Survival of Ca-alginate microencapsulated Bifidobacterium spp. in milk and simulated gastrointestinal conditions,” Food Microbiology, vol. 19, no. 1, pp. 35–45, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Borgogna, B. Bellich, L. Zorzin, R. Lapasin, and A. Cesàro, “Food microencapsulation of bioactive compounds: rheological and thermal characterisation of nonconventional gelling system,” Food Chemistry, vol. 122, no. 2, pp. 416–423, 2010.
  32. W. Sun and M. W. Griffiths, “Survival of bifidobacteria in yogurt and simulated gastric juice following immobilization in gellan-xanthan beads,” International Journal of Food Microbiology, vol. 61, no. 1, pp. 17–25, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. J. C. Mohan, R. Arora, and M. Khalilullah, “Short term hypolipidemic effects of oral Lactobacillus sporogenes therapy in patients with primary dyslipidemias,” Indian Heart Journal, vol. 42, no. 5, pp. 361–364, 1990. View at Scopus
  34. H. Bukowska, J. Pieczul-Mroz, M. Jastrzebska, K. Chelstowski, and M. Naruszewicz, “Decrease in fibrinogen and LDL-cholesterol levels upon supplementation of diet with Lactobacillus plantarum in subjects with moderately elevated cholesterol,” Atherosclerosis, vol. 137, no. 2, pp. 437–438, 1998. View at Publisher · View at Google Scholar · View at Scopus
  35. J. W. Anderson and S. E. Gilliland, “Effect of fermented milk (yogurt) containing Lactobacillus acidophilus L1 on serum cholesterol in hypercholesterolemic humans,” Journal of the American College of Nutrition, vol. 18, no. 1, pp. 43–50, 1999. View at Scopus
  36. M. Naruszewicz, M. Johansson, D. Zapolska-Downar, and H. Bukowska, “Effect of Lactobacillus plantarum 299v on cardiovascular disease risk factors in smokers,” American Journal of Clinical Nutrition, vol. 76, no. 6, pp. 1249–1255, 2002. View at Scopus
  37. M. Kalliomäki, S. Salminen, H. Arvilommi, P. Kero, P. Koskinen, and E. Isolauri, “Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial,” The Lancet, vol. 357, no. 9262, pp. 1076–1079, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Rautava, M. Kalliomäki, and E. Isolauri, “Probiotics during pregnancy and breast-feeding might confer immunomodulatory protection against atopic disease in the infant,” Journal of Allergy and Clinical Immunology, vol. 109, no. 1, pp. 119–121, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. T. Pessi, Y. Sütas, M. Hurme, and E. Isolauri, “Interleukin-10 generation in atopic children following oral lactobacillus rhamnosus GG,” Clinical and Experimental Allergy, vol. 30, no. 12, pp. 1804–1808, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. E. Isolauri, T. Arvola, Y. Sutas, E. Moilanen, and S. Salminen, “Probiotics in the management of atopic eczema,” Clinical and Experimental Allergy, vol. 30, no. 11, pp. 1604–1610, 2000. View at Scopus
  41. E. Isolauri, H. Majamaa, T. Arvola, I. Rantala, E. Virtanen, and H. Arvilommi, “Lactobacillus casei strain GG reverses increased intestinal permeability induced by cow milk in suckling rats,” Gastroenterology, vol. 105, no. 6, pp. 1643–1650, 1993. View at Scopus
  42. T. Pessi, Y. Sütas, A. Marttinen, and E. Isolauri, “Probiotics reinforce mucosal degradation of antigens in rats: implications for therapeutic use of probiotics,” Journal of Nutrition, vol. 128, no. 12, pp. 2313–2318, 1998. View at Scopus
  43. T. Matsuzaki, R. Yamazaki, S. Hashimoto, and T. Yokokura, “The effect of oral feeding of Lactobacillus casei strain Shirota on immunoglobulin E production in mice,” Journal of Dairy Science, vol. 81, no. 1, pp. 48–53, 1998. View at Scopus
  44. K. Shida, K. Makino, A. Morishita et al., “Lactobacillus casei inhibits antigen-induced IgE secretion through regulation of cytokine production in murine splenocyte cultures,” International Archives of Allergy and Immunology, vol. 115, no. 4, pp. 278–287, 1998. View at Publisher · View at Google Scholar · View at Scopus
  45. H. Majamaa and E. Isolauri, “Probiotics: a novel approach in the management of food allergy,” Journal of Allergy and Clinical Immunology, vol. 99, no. 2, pp. 179–185, 1997. View at Publisher · View at Google Scholar · View at Scopus
  46. L. Pelto, E. Isolauri, E.-M. Lillus, J. Nuutila, and S. Salminen, “Probiotic bacteria down-regulate the milk-induced inflammatory response in milk-hypersensitive subjects but have an immunostimulatory effect in healthy subjects,” Clinical and Experimental Allergy, vol. 28, no. 12, pp. 1474–1479, 1998. View at Publisher · View at Google Scholar · View at Scopus
  47. Y. Sütas, M. Hurme, and E. Isolauri, “Down-regulation of anti-CD3 antibody-induced IL-4 production by bovine caseins hydrolysed with Lactobacillus GG-derived enzymes,” Scandinavian Journal of Immunology, vol. 43, no. 6, pp. 687–689, 1996. View at Scopus
  48. Y. Sütas, E. Soppi, H. Korhonen et al., “Suppression of lymphocyte proliferation in vitro by bovine caseins hydrolyzed with Lactobacillus casei GG-derived enzymes,” Journal of Allergy and Clinical Immunology, vol. 98, no. 1, pp. 216–224, 1996. View at Scopus
  49. L. Pelto, S. Salminen, and E. Isolauri, “Lactobacillus GG modulates milkinduced immune inflammatory response in milk-hypersensitive adults,” Nutrition Today, vol. 31, supplement 6, pp. 45S–47S, 1996.
  50. K. Hatakka, E. Savilahti, A. Pönkä et al., “Effect of long term consumption of probiotic milk on infections in children attending day care centres: double blind, randomised trial,” British Medical Journal, vol. 322, no. 7298, pp. 1327–1329, 2001. View at Scopus
  51. E. J. Schiffrin, F. Rochat, H. Link-Amster, J. M. Aeschlimann, and A. Donnet-Hughes, “Immunomodulation of human blood cells following the ingestion of lactic acid bacteria,” Journal of Dairy Science, vol. 78, no. 3, pp. 491–497, 1995. View at Scopus
  52. E. J. Schiffrin, D. Brassart, A. L. Servin, F. Rochat, and A. Donnet-Hughes, “Immune modulation of blood leukocytes in humans by lactic acid bacteria: criteria for strain selection,” American Journal of Clinical Nutrition, vol. 66, supplement 2, pp. 515S–520S, 1997. View at Scopus
  53. G. Perdigon, M. E. N. de Macias, S. Alvarez, G. Oliver, and A. A. P. Holgado, “Enhancement of immune response in mice fed with Streptococcus thermophilus and Lactobacillus acidophilus,” Journal of Dairy Science, vol. 70, no. 5, pp. 919–926, 1993. View at Scopus
  54. M. V. Tejada-Simon, J. H. Lee, Z. Ustunol, and J. J. Pestka, “Ingestion of yogurt containing Lactobacillus acidophilus and Bifidobacterium to potentiate immunoglobulin A responses to cholera toxin in mice,” Journal of Dairy Science, vol. 82, no. 4, pp. 649–660, 1999. View at Scopus
  55. G. E. Hatcher and R. S. Lambrecht, “Augmentation of macrophage phagocytic activity by cell-free extracts of selected lactic acid-producing bacteria,” Journal of Dairy Science, vol. 76, no. 9, pp. 2485–2492, 1993. View at Scopus
  56. P. Marteau, J. Vaerman, J. Dehennin et al., “Effects of intrajejunal perfusion and chronic ingestion of Lactobacillus johnsonii strain La1 on serum concentrations and jejunal secretions of immunoglobulins and serum proteins in healthy humans,” Gastroenterologie Clinique et Biologique, vol. 21, no. 4, pp. 293–298, 1997. View at Scopus
  57. K. Arunachalam, H. S. Gill, and R. K. Chandra, “Enhancement of natural immune function by dietary consumption of Bifidobacterium lactis (HN019),” European Journal of Clinical Nutrition, vol. 54, no. 3, pp. 263–267, 2000. View at Publisher · View at Google Scholar · View at Scopus
  58. B. L. Chiang, Y. H. Sheih, L. H. Wang, C. K. Liao, and H. S. Gill, “Enhancing immunity by dietary consumption of a probiotic lactic acid bacterium (Bifidobacterium lactis HN019): optimization and definition of cellular immune responses,” European Journal of Clinical Nutrition, vol. 54, no. 11, pp. 849–855, 2000. View at Scopus
  59. Y.-H. Sheih, B.-L. Chiang, L.-H. Wang, C.-K. Liao, and H. S. Gill, “Systemic immunity-enhancing effects in healthy subjects following dietary consumption of the lactic acid bacterium Lactobacillus rhamnosus HN001,” Journal of the American College of Nutrition, vol. 20, no. 2, pp. 149–156, 2001. View at Scopus
  60. H. S. Gill, K. J. Rutherfurd, J. Prasad, and P. K. Gopal, “Enhancement of natural and acquired immunity by Lactobacillus rhamnosus (HN001), Lactobacillus acidophilus (HN017) and Bifidobacterium lactis (HN019),” British Journal of Nutrition, vol. 83, no. 2, pp. 167–176, 2000. View at Scopus
  61. A. Armuzzi, F. Cremonini, F. Bartolozzi et al., “The effect of oral administration of Lactobacillus GG on antibiotic-associated gastrointestinal side-effects during Helicobacter pylori eradication therapy,” Alimentary Pharmacology and Therapeutics, vol. 15, no. 2, pp. 163–169, 2001. View at Publisher · View at Google Scholar · View at Scopus
  62. J. A. Vanderhoof, D. B. Whitney, D. L. Antonson, T. L. Hanner, J. V. Lupo, and R. J. Young, “Lactobacillus GG in the prevention of antibiotic-associated diarrhea in children,” Journal of Pediatrics, vol. 135, no. 5, pp. 564–568, 1999. View at Scopus
  63. S. Siitonen, H. Vapaatalo, S. Salminen et al., “Effect of Lactobacillus GG yoghurt in prevention of antibiotic associated diarrhoea,” Annals of Medicine, vol. 22, no. 1, pp. 57–59, 1990. View at Scopus
  64. J. A. Biller, A. J. Katz, A. F. Flores, T. M. Buie, and S. L. Gorbach, “Treatment of recurrent Clostridium difficile colitis with Lactobacillus GG,” Journal of Pediatric Gastroenterology and Nutrition, vol. 21, no. 2, pp. 224–226, 1995. View at Scopus
  65. R. G. Bennett, S. L. Gorbach, B. R. Goldin, et al., “Treatment of relapsing Clostridium difficile diarrhea with Lactobacillus GG,” Nutrition Today, vol. 31, pp. 35S–39S, 1996.
  66. F. Black, K. Einarsson, A. Lidbeck, K. Orrhage, and C. E. Nord, “Effect of lactic acid producing bacteria on the human intestinal microflora during ampicillin treatment,” Scandinavian Journal of Infectious Diseases, vol. 23, no. 2, pp. 247–254, 1991. View at Scopus
  67. M. Hickson, A. L. D'Souza, N. Muthu et al., “Use of probiotic Lactobacillus preparation to prevent diarrhoea associated with antibiotics: randomised double blind placebo controlled trial,” British Medical Journal, vol. 335, article 80, 2007. View at Publisher · View at Google Scholar
  68. C. M. Surawicz, G. W. Elmer, P. Speelman, L. V. McFarland, J. Chinn, and G. van Belle, “Prevention of antibiotic-associated diarrhea by Saccharomyces boulardii: a prospective study,” Gastroenterology, vol. 96, no. 4, pp. 981–988, 1989. View at Scopus
  69. L. V. McFarland, C. M. Surawicz, R. N. Greenberg et al., “Prevention of β-lactam-associated diarrhea by Saccharomyces boulardii compared with placebo,” American Journal of Gastroenterology, vol. 90, no. 3, pp. 439–448, 1995. View at Scopus
  70. F. Cremonini, S. Di Caro, M. Covino et al., “Effect of different probiotic preparations on anti-Helicobacter pylori therapy-related side effects: a parallel group, triple blind, placebo-controlled study,” American Journal of Gastroenterology, vol. 97, no. 11, pp. 2744–2749, 2002. View at Scopus
  71. T. Arvola, K. Laiho, S. Torkkeli et al., “Prophylactic Lactobacillus GG reduces antibiotic-associated diarrhea in children with respiratory infections: a randomized study,” Pediatrics, vol. 104, no. 5, pp. 1–4, 1999. View at Scopus
  72. J. Levy, “Experience with live Lactobacillus plantarum 299V: a promising adjunct in the management of recurrent Clostridium difficile infection,” Gastroenterology, vol. 112, article A379, 1997.
  73. M. Gotteland, S. Cruchet, and S. Verbeke, “Effect of lactobacillus ingestion on the gastrointestinal mucosal barrier alterations induced by indometacin in humans,” Alimentary Pharmacology and Therapeutics, vol. 15, no. 1, pp. 11–17, 2001. View at Publisher · View at Google Scholar · View at Scopus
  74. H. Jahn, R. Ullrich, T. Schneider et al., “Immunological and trophical effects of Saccharomyces boulardii on the small intestine in healthy human volunteers,” Digestion, vol. 57, no. 2, pp. 95–104, 1996. View at Scopus
  75. J.-P. Buts, N. de Keyser, and L. de Raedemaeker, “Saccharomyces boulardii enhances rat intestinal enzyme expression by endoluminal release of polyamines,” Pediatric Research, vol. 36, no. 4, pp. 522–527, 1994. View at Scopus
  76. A. Shornikova, I. A. Casas, H. Mykkänen, E. Salo, and T. Vesikari, “Bacteriotherapy with Lactobacillus reuteri in rotavirus gastroenteritis,” Pediatric Infectious Disease Journal, vol. 16, no. 12, pp. 1103–1107, 1997. View at Publisher · View at Google Scholar · View at Scopus
  77. D. R. Mack, S. Michail, S. Wei, L. McDougall, and M. A. Hollingsworth, “Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression,” American Journal of Physiology, vol. 276, no. 4, pp. G941–G950, 1999. View at Scopus
  78. A.-V. Shornikova, E. Isolauri, L. Burkanova, S. Lukovnikova, and T. Vesikari, “A trial in the Karelian Republic of oral rehydration and Lactobacillus GG for treatment of acute diarrhoea,” Acta Paediatrica, International Journal of Paediatrics, vol. 86, no. 5, pp. 460–465, 1997. View at Scopus
  79. M. Kaila, E. Isolauri, E. Soppi, E. Virtanen, S. Laine, and H. Arvilommi, “Enhancement of the circulating antibody secreting cell response in human diarrhea by a human Lactobacillus strain,” Pediatric Research, vol. 32, no. 2, pp. 141–144, 1992. View at Scopus
  80. J. M. Saavedra, N. A. Bauman, I. Oung, J. A. Perman, and R. H. Yolken, “Feeding of Bifidobacterium bifidum and Streptococcus thermophilus to infants in hospital for prevention of diarrhoea and shedding of rotavirus,” The Lancet, vol. 344, no. 8929, pp. 1046–1049, 1994. View at Publisher · View at Google Scholar · View at Scopus
  81. S. Gonzalez, G. Albarracin, M. L. Pesce, M. Appela, A. P. Holgado, and G. Oliver, “Prevention of infantile diarrhoea by fermented milk,” Microbiologie, Aliments, Nutrition, vol. 8, pp. 349–354, 1990.
  82. S. N. Gonzalez, R. Cardozo, M. C. Apella, and G. Oliver, “Biotherapeutic role of fermented milk,” Biotherapy, vol. 8, no. 2, pp. 129–134, 1994. View at Publisher · View at Google Scholar · View at Scopus
  83. T. Sugita and M. Togowa, “Efficacy of Lactobacillus preparation Biolactis powder in children with rotavirus enteritis,” Japan Journal of Pediatrics, vol. 47, pp. 213–220, 1994.
  84. S. Michail and F. Abernathy, “Lactobacillus plantarum reduces the in vitro secretory response of intestinal epithelial cells to enteropathogenic Escherichia coli infection,” Journal of Pediatric Gastroenterology and Nutrition, vol. 35, no. 3, pp. 350–355, 2002. View at Publisher · View at Google Scholar · View at Scopus
  85. M. Ogawa, K. Shimizu, K. Nomoto et al., “Protective effect of Lactobacillus casei strain Shirota on Shiga toxin-producing Escherichia coli O157:H7 infection in infant rabbits,” Infection and Immunity, vol. 69, no. 2, pp. 1101–1108, 2001. View at Publisher · View at Google Scholar · View at Scopus
  86. P. F. Pérez, J. Minnaard, M. Rouvet et al., “Inhibition of Giardia intestinalis by extracellular factors from lactobacilli: an in vitro study,” Applied and Environmental Microbiology, vol. 67, no. 3–12, pp. 5037–5042, 2001. View at Scopus
  87. I. Adlerberth, S. Ahrné, M. Johansson, G. Molin, L. A. Hanson, and A. E. Wold, “A mannose-specific adherence mechanism in Lactobacillus plantarum conferring binding to the human colonic cell line HT-29,” Applied and Environmental Microbiology, vol. 62, no. 7, pp. 2244–2251, 1996. View at Scopus
  88. M. Silva, N. V. Jacobus, C. Deneke, and S. L. Gorbach, “Antimicrobial substance from a human Lactobacillus strain,” Antimicrobial Agents and Chemotherapy, vol. 31, no. 8, pp. 1231–1233, 1987. View at Scopus
  89. D. Bouglé, N. Roland, F. Lebeurrier, and P. Arhan, “Effect of propionibacteria supplementation on fecal bifidobacteria and segmental colonic transit time in healthy human subjects,” Scandinavian Journal of Gastroenterology, vol. 34, no. 2, pp. 144–148, 1999. View at Scopus
  90. S. Spanhaak, R. Havenaar, and G. Schaafsma, “The effect of consumption of milk fermented by Lactobacillus casei strain Shirota on the intestinal microflora and immune parameters in humans,” European Journal of Clinical Nutrition, vol. 52, no. 12, pp. 899–907, 1998. View at Scopus
  91. M. F. Bernet, D. Brassart, J. R. Neeser, and A. L. Servin, “Lactobacillus acidophilus LA 1 binds to cultured human intestinal cell lines and inhibits cell attachment and cell invasion by enterovirulent bacteria,” Gut, vol. 35, no. 4, pp. 483–489, 1994. View at Scopus
  92. M.-L. Johansson, G. Molin, B. Jeppsson, S. Nobaek, S. Ahrne, and S. Bengmark, “Administration of different Lactobacillus strains in fermented oatmeal soup: in vivo colonization of human intestinal mucosa and effect on the indigenous flora,” Applied and Environmental Microbiology, vol. 59, no. 1, pp. 15–20, 1993. View at Scopus
  93. C. N. Jacobsen, V. R. Nielsen, A. E. Hayford et al., “Screening of probiotic activities of forty-seven strains of Lactobacillus spp. by in vitro techniques and evaluation of the colonization ability of five selected strains in humans,” Applied and Environmental Microbiology, vol. 65, no. 11, pp. 4949–4956, 1999. View at Scopus
  94. R. G. Montes, T. M. Bayless, J. M. Saavedra, and J. A. Perman, “Effect of milks inoculated with Lactobacillus acidophilus or a yogurt starter culture in lactose-maldigesting children,” Journal of Dairy Science, vol. 78, no. 8, pp. 1657–1664, 1995. View at Scopus
  95. D. O. Noh and S. E. Gilliland, “Influence of bile on cellular integrity and beta-galactosidase activity of Lactobacillus acidophilus,” Journal of Dairy Science, vol. 76, no. 5, pp. 1253–1259, 1993. View at Scopus
  96. M. Y. Lin, D. Savaiano, and S. Harlander, “Influence of nonfermented dairy products containing bacterial starter cultures on lactose maldigestion in humans,” Journal of Dairy Science, vol. 74, no. 1, pp. 87–95, 1991. View at Scopus
  97. T. Jiang and D. A. Savaiano, “In vitro lactose fermentation by human colonic bacteria is modified by Lactobacillus acidophilus supplementation,” Journal of Nutrition, vol. 127, no. 8, pp. 1489–1495, 1997. View at Scopus
  98. H. S. Kim and S. E. Gilliland, “Lactobacillus acidophilus as a dietary adjunct for milk to aid lactose digestion in humans,” Journal of Dairy Science, vol. 66, no. 5, pp. 959–966, 1983. View at Scopus
  99. J. Rasic, I. Klem, D. Jovanovic, and M. Ac, “Antimicrobial effect of Lactobacillus acidophilus and Lactobacillus delbrueckii subsp. bulgaricus against Heelicobacter pylori in vitro,” Archives of Gastroenterohepatology, vol. 14, no. 4, pp. 158–160, 1995. View at Scopus
  100. P. Michetti, G. Dorta, P. H. Wiesel et al., “Effect of whey-based culture supernatant of Lactobacillus acidophilus (johnsonii) La1 on Helicobacter pylori infection in humans,” Digestion, vol. 60, no. 3, pp. 203–209, 1999. View at Publisher · View at Google Scholar · View at Scopus
  101. C. P. Felley, I. Corthésy-Theulaz, J.-L. Rivero et al., “Favourable effect of an acidified milk (LC-1) on Helicobacter pylori gastritis in man,” European Journal of Gastroenterology and Hepatology, vol. 13, no. 1, pp. 25–29, 1999. View at Scopus
  102. M. Coconnier, V. Lievin, E. Hemery, and A. L. Servin, “Antagonistic activity against Helicobacter infection in vitro and in vivo by the human Lactobacillus acidophilus strain LB,” Applied and Environmental Microbiology, vol. 64, no. 11, pp. 4573–4580, 1998. View at Scopus
  103. K. Niedzielin, H. Kordecki, and B. Birkenfeld, “A controlled, double-blind, randomized study on the efficacy of Lactobacillus plantarum 299V in patients with irritable bowel syndrome,” European Journal of Gastroenterology and Hepatology, vol. 13, no. 10, pp. 1143–1147, 2001. View at Publisher · View at Google Scholar · View at Scopus
  104. S. Nobaek, M. Johansson, G. Molin, S. Ahrné, and B. Jeppsson, “Alteration of intestinal microflora is associated with reduction in abdominal bloating and pain in patients with irritable bowel syndrome,” American Journal of Gastroenterology, vol. 95, no. 5, pp. 1231–1238, 2000. View at Publisher · View at Google Scholar · View at Scopus
  105. G. . Bazzocchi, M. Campieri, P. Gionchetti, et al., “Change in colonic function and fecal microbiological and enzymatic activities induced by a new probiotic preparation,” Gastroenterology International, vol. 11, supplement 1, article 111, 1998.
  106. E. Salminen, I. Elomaa, J. Minkkinen, H. Vapaatalo, and S. Salminen, “Preservation of intestinal integrity during radiotherapy using live Lactobacillus acidophilus cultures,” Clinical Radiology, vol. 39, no. 4, pp. 435–437, 1988. View at Scopus
  107. P. Delia, G. Sansotta, V. Donato et al., “Prevention of radiation-induced diarrhea with the use of VSL#3, a new high-potency probiotic preparation,” American Journal of Gastroenterology, vol. 97, no. 8, pp. 2150–2152, 2002. View at Publisher · View at Google Scholar · View at Scopus
  108. P. J. Oksanen, S. Salminen, M. Saxelin et al., “Prevention of travellers' diarrhoea by Lactobacillus GG,” Annals of Medicine, vol. 22, no. 1, pp. 53–56, 1990. View at Scopus
  109. A. C. Ouwehand, P. V. Kirjavainen, C. Shortt, and S. Salminen, “Probiotics: mechanisms and established effects,” International Dairy Journal, vol. 9, no. 1, pp. 43–52, 1999. View at Publisher · View at Google Scholar · View at Scopus
  110. G. W. Elmer, C. M. Surawicz, and L. V. McFarland, “Biotherapeutic agents: a neglected modality for the treatment and prevention of selected intestinal and vaginal infections,” Journal of the American Medical Association, vol. 275, no. 11, pp. 870–876, 1996. View at Publisher · View at Google Scholar · View at Scopus
  111. M. Malin, H. Suomalainen, M. Saxelin, and E. Isolauri, “Promotion of IgA immune response in patients with Crohn's disease by oral bacteriotherapy with Lactobacillus GG,” Annals of Nutrition and Metabolism, vol. 40, no. 3, pp. 137–145, 1996. View at Scopus
  112. P. Gupta, H. Andrew, B. S. Kirschner, and S. Guandalini, “Is Lactobacillus GG helpful in children with Crohn's disease? Results of a preliminary, open-label study,” Journal of Pediatric Gastroenterology and Nutrition, vol. 31, no. 4, pp. 453–457, 2000. View at Publisher · View at Google Scholar · View at Scopus
  113. M. Guslandi, G. Mezzi, M. Sorghi, and P. A. Testoni, “Saccharomyces boulardii in maintenance treatment of Crohn's disease,” Digestive Diseases and Sciences, vol. 45, no. 7, pp. 1462–1464, 2000. View at Publisher · View at Google Scholar · View at Scopus
  114. K. Plein and J. Hotz, “Therapeutic effects of Saccharomyces boulardii on mild residual symptoms in a stable phase of Crohn's disease with special respect to chronic diarrhea—a pilot study,” Zeitschrift fur Gastroenterologie, vol. 31, no. 2, pp. 129–134, 1993. View at Scopus
  115. A. Venturi, P. Gionchetti, F. Rizzello et al., “Impact on the composition of the faecal flora by a new probiotic preparation: preliminary data on maintenance treatment of patients with ulcerative colitis,” Alimentary Pharmacology and Therapeutics, vol. 13, no. 8, pp. 1103–1108, 1999. View at Publisher · View at Google Scholar · View at Scopus
  116. W. Kruis, E. Schutz, P. Fric, B. Fixa, G. Judmaier, and M. Stolte, “Double-blind comparison of an oral Escherichia coli prepration and mesalazine in maintaining remission of ulcerative colitis,” Alimentary Pharmacology and Therapeutics, vol. 11, no. 5, pp. 853–858, 1997. View at Scopus
  117. B. J. Rembacken, A. M. Snelling, P. M. Hawkey, D. M. Chalmers, and A. T. R. Axon, “Non-pathogenic Escherichia coli versus mesalazine for the treatment of ulcerative colitis: a randomised trial,” The Lancet, vol. 354, no. 9179, pp. 635–639, 1999. View at Publisher · View at Google Scholar · View at Scopus
  118. P. Gionchetti, F. Rizzello, A. Venturi et al., “Oral bacteriotherapy as maintenance treatment in patients with chronic pouchitis: a double-blind, placebo-controlled trial,” Gastroenterology, vol. 119, no. 2, pp. 584–587, 2000. View at Scopus
  119. R. J. Kennedy, S. J. Kirk, and K. R. Gardiner, “Probiotics in IBD,” Gut, vol. 49, no. 6, p. 873, 2001. View at Publisher · View at Google Scholar · View at Scopus
  120. W. H. L. Ling, R. Korpela, H. Mykkanen, S. Salminen, and O. Hanninen, “Lactobacillus strain GG supplementation decreases colonic hydrolytic and reductive enzyme activities in healthy female adults,” Journal of Nutrition, vol. 124, no. 1, pp. 18–23, 1994. View at Scopus
  121. P. Bailey and K. Shahani, “Inhibitory effect of acidophilus cultured colostrum and milk upon the proliferation of ascites tumor,” in Proceedings of the 71st Annual Meeting of the American Dairy Science Association, 1979.
  122. G. H. McIntosh, P. J. Royle, and M. J. Playne, “A probiotic strain of L. Acidophilus reduces DMH-induced large intestinal tumors in male sprague-dawley rats,” Nutrition and Cancer, vol. 35, no. 2, pp. 153–159, 1999. View at Scopus
  123. B. R. Goldin and S. L. Gorbach, “The effect of milk and lactobacillus feeding on human intestinal bacterial enzyme activity,” American Journal of Clinical Nutrition, vol. 39, no. 5, pp. 756–761, 1984. View at Scopus
  124. I. G. Bogdanov, P. G. Dalev, and A. I. Gurevich, “Antitumour glycopeptides from Lactobacillus bulgaricus cell wall,” FEBS Letters, vol. 57, pp. 3–8, 1975. View at Scopus
  125. G. Reid, A. W. Bruce, and M. Taylor, “Influence of three-day antimicrobial therapy and lactobacillus vaginal suppositories on recurrence or urinary tract infections,” Clinical Therapeutics, vol. 14, no. 1, pp. 11–16, 1992. View at Scopus
  126. A. W. Bruce, G. Reid, J. A. McGroarty, M. Taylor, and C. Preston, “Preliminary study on the prevention of recurrent urinary tract infection in adult women using intravaginal Lactobacilli,” International Urogynecology Journal, vol. 3, no. 1, pp. 22–25, 1992. View at Publisher · View at Google Scholar · View at Scopus
  127. G. Reid, A. W. Bruce, N. Fraser, C. Heinemann, J. Owen, and B. Henning, “Oral probiotics can resolve urogenital infections,” FEMS Immunology and Medical Microbiology, vol. 30, no. 1, pp. 49–52, 2001. View at Publisher · View at Google Scholar · View at Scopus
  128. G. Reid, “Probiotic therapy and functional foods for the prevention of urinary tract infections: state of the art and science,” Current Infectious Disease Reports, vol. 2, pp. 518–522, 2000.
  129. G. Reid and A. W. Bruce, “Selection of Lactobacillus strains for urogenital probiotic applications,” Journal of Infectious Diseases, vol. 183, supplement 1, pp. S77–S80, 2001. View at Publisher · View at Google Scholar · View at Scopus
  130. G. Reid, A. W. Bruce, R. L. Cook, and M. Llano, “Effect of urogenital flora of antibiotic therapy for urinary tract infection,” Scandinavian Journal of Infectious Diseases, vol. 22, no. 1, pp. 43–47, 1990. View at Scopus
  131. G. Reid, A. W. Bruce, and M. Taylor, “Instillation of Lactobacillus and stimulation of indigenous organisms to prevent recurrence of urinary tract infections,” Microecology and Therapy, vol. 23, pp. 32–45, 1995.
  132. G. Reid, “In vitro testing of Lactobacillus acidophilus NCFM(TM) as a possible probiotic for the urogenital tract,” International Dairy Journal, vol. 10, no. 5-6, pp. 415–419, 2000. View at Publisher · View at Google Scholar · View at Scopus
  133. A. B. Williams, C. Yu, K. Tashima, J. Burgess, and K. Danvers, “Evaluation of two self-care treatments for prevention of vaginal candidiasis in women with HIV,” The Journal of the Association of Nurses in AIDS Care, vol. 12, no. 4, pp. 51–57, 2001. View at Scopus
  134. E. Hilton, H. D. Isenberg, P. Alperstein, K. France, and M. T. Borenstein, “Ingestion of yogurt containing Lactobacillus acidophilus as prophylaxis for candidal vaginitis,” Annals of Internal Medicine, vol. 116, no. 5, pp. 353–357, 1992. View at Scopus
  135. R. D. Wagner, C. Pierson, T. Warner et al., “Biotherapeutic effects of probiotic bacteria on candidiasis in immunodeficient mice,” Infection and Immunity, vol. 65, no. 10, pp. 4165–4172, 1997. View at Scopus
  136. M. Plockova, J. Chumchalova, and J. Tomanova, “Antifungal activity of Lactobacillus acidophilus, CH5 metabolites,” Potravinarske Vedy, vol. 15, no. 1, pp. 39–48, 1997.
  137. E. Hilton, P. Rindos, and H. D. Isenberg, “Lactobacillus GG vaginal suppositories and vaginitis,” Journal of Clinical Microbiology, vol. 33, no. 5, p. 1433, 1995. View at Scopus
  138. P. Cadieux, J. Burton, G. Gardiner et al., “Lactobacillus strains and vaginal ecology,” Journal of the American Medical Association, vol. 287, no. 15, pp. 1940–1941, 2002. View at Scopus
  139. R. Sridar, M. Nguyen, and K. Kailasapathy, “Studies on the effect of encapsulation on the survival of probiotic microorganisms under high acid and bile conditions,” Journal of Food Science and Technology, vol. 40, no. 5, pp. 458–460, 2003. View at Scopus
  140. K. Kailasapathy and L. Masondole, “Survival of free and microencapsulated Lactobacillus acidophilus and Bifidobacterium lactis and their effect on texture of feta cheese,” Australian Journal of Dairy Technology, vol. 60, no. 3, pp. 252–258, 2005. View at Scopus
  141. A. Picot and C. Lacroix, “Encapsulation of bifidobacteria in whey protein-based microcapsules and survival in simulated gastrointestinal conditions and in yoghurt,” International Dairy Journal, vol. 14, no. 6, pp. 505–515, 2004. View at Publisher · View at Google Scholar · View at Scopus
  142. E. S. Chan and Z. Zhang, “Bioencapsulation by compression coating of probiotic bacteria for their protection in an acidic medium,” Process Biochemistry, vol. 40, no. 10, pp. 3346–3351, 2005. View at Publisher · View at Google Scholar · View at Scopus
  143. R. C. W. Hou, M. Y. Lin, M. M. C. Wang, and J. T. C. Tzen, “Increase of viability of entrapped cells of Lactobacillus delbrueckii ssp. bulgaricus in artificial sesame oil emulsions,” Journal of Dairy Science, vol. 86, no. 2, pp. 424–428, 2003. View at Scopus
  144. W. K. Ding and N. P. Shah, “Effect of various encapsulating materials on the stability of probiotic bacteria,” Journal of Food Science, vol. 74, no. 2, pp. M100–M107, 2009. View at Publisher · View at Google Scholar · View at Scopus
  145. A. Sohail, M. S. Turner, A. Coombes, T. Bostrom, and B. Bhandari, “Survivability of probiotics encapsulated in alginate gel microbeads using a novel impinging aerosols method,” International Journal of Food Microbiology, vol. 145, no. 1, pp. 162–168, 2011. View at Publisher · View at Google Scholar · View at Scopus
  146. S. Gouin, “Microencapsulation: industrial appraisal of existing technologies and trends,” Trends in Food Science and Technology, vol. 15, no. 7-8, pp. 330–347, 2004. View at Publisher · View at Google Scholar · View at Scopus
  147. Y. Zhou, E. Martins, A. Groboillot, C. P. Champagne, and R. J. Neufeld, “Spectrophotometric quantification of lactic bacteria in alginate and control of cell release with chitosan coating,” Journal of Applied Microbiology, vol. 84, no. 3, pp. 342–348, 1998. View at Scopus
  148. H. Prevost, C. Divies, and E. Rousseau, “Continuous yoghurt production with Lactobacillus bulgaricus and Streptococcus thermophilus entrapped in Ca-alginate,” Biotechnology Letters, vol. 7, no. 4, pp. 247–252, 1985. View at Publisher · View at Google Scholar · View at Scopus
  149. H. Prevost and C. Divies, “Fresh fermented cheese production with continuous pre-fermented milk by a mixed culture of mesophilic lactic streptococci entrapped in Ca-Al ginate,” Biotechnology Letters, vol. 9, no. 11, pp. 789–794, 1987. View at Publisher · View at Google Scholar · View at Scopus
  150. L. R. Steenson, T. R. Klaenhammer, and H. E. Swaisgood, “Calcium alginate-immobilized cultures of lactic Streptococci are protected from bacteriophages,” Journal of Dairy Science, vol. 70, no. 6, pp. 1121–1127, 1987. View at Scopus
  151. L. Kearney, M. Upton, and A. McLoughlin, “Enhancing the viability of Lactobacillus plantarum inoculum by immobilizing the cells in calcium-alginate beads incorporating cryoprotectants,” Applied and Environmental Microbiology, vol. 56, no. 10, pp. 3112–3116, 1990. View at Scopus
  152. H. Prevost and C. Divies, “Cream fermentation by a mixed culture of Lactococci entrapped in two-layer calcium alginate gel beads,” Biotechnology Letters, vol. 14, no. 7, pp. 583–588, 1992. View at Scopus
  153. N. Morin, M. Bernier-Cardou, and C. P. Champagne, “Production of Lactococcus lactis biomass by immobilized cell technology,” Journal of Industrial Microbiology, vol. 9, no. 2, pp. 131–135, 1992. View at Scopus
  154. C. P. Champagne, F. Girard, and N. Rodrigue, “Production of concentrated suspensions of thermophilic lactic acid bacteria in calcium-alginate beads,” International Dairy Journal, vol. 3, no. 3, pp. 257–275, 1993. View at Scopus
  155. R. Cachon and C. Divies, “Localization of Lactococcus lactis ssp lactis bv diacetylactis in alginate gel beads affects biomass density and synthesis of several enzymes involved in lactose and citrate metabolism,” Biotechnology Techniques, vol. 7, no. 6, pp. 453–456, 1993. View at Publisher · View at Google Scholar · View at Scopus
  156. T. Jankowski, M. Zielinska, and A. Wysakowska, “Encapsulation of lactic acid bacteria with alginate/starch capsules,” Biotechnology Techniques, vol. 11, no. 1, pp. 31–34, 1997. View at Scopus
  157. L. D. McMaster, S. A. Kokott, and P. Slatter, “Micro-encapsulation of Bifidobacterium lactis for incorporation into soft foods,” World Journal of Microbiology and Biotechnology, vol. 21, no. 5, pp. 723–728, 2005. View at Publisher · View at Google Scholar · View at Scopus
  158. L. D. McMaster, S. A. Kokott, S. J. Reid, and V. R. Abratt, “Use of traditional African fermented beverages as delivery vehicles for Bifidobacterium lactis DSM 10140,” International Journal of Food Microbiology, vol. 102, no. 2, pp. 231–237, 2005. View at Publisher · View at Google Scholar · View at Scopus
  159. C. P. Champagne, C. Gaudy, D. Poncelet, and R. J. Neufeld, “Lactococcus lactis release from calcium alginate beads,” Applied and Environmental Microbiology, vol. 58, no. 5, pp. 1429–1434, 1992. View at Scopus
  160. C. Martoni, J. Bhathena, A. M. Urbanska, and S. Prakash, “Microencapsulated bile salt hydrolase producing Lactobacillus reuteri for oral targeted delivery in the gastrointestinal tract,” Applied Microbiology and Biotechnology, vol. 81, no. 2, pp. 225–233, 2008. View at Publisher · View at Google Scholar · View at Scopus
  161. V. Chandramouli, K. Kailasapathy, P. Peiris, and M. Jones, “An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions,” Journal of Microbiological Methods, vol. 56, no. 1, pp. 27–35, 2004. View at Publisher · View at Google Scholar · View at Scopus
  162. S. Graff, J. Chaumeil, P. Boy, R. Lai-Kuen, and C. Charrueau, “Formulations for protecting the probiotic Saccharomyces boulardii from degradation in acidic condition,” Biological and Pharmaceutical Bulletin, vol. 31, no. 2, pp. 266–272, 2008. View at Publisher · View at Google Scholar · View at Scopus
  163. M. Chen, K. Chen, and Y. Kuo, “Optimal thermotolerance of Bifidobacterium bifidum in gellan-alginate microparticles,” Biotechnology and Bioengineering, vol. 98, no. 2, pp. 411–419, 2007. View at Publisher · View at Google Scholar · View at Scopus
  164. K. Chen, M. Chen, and C. Lin, “Optimal combination of the encapsulating materials for probiotic microcapsules and its experimental verification (R1),” Journal of Food Engineering, vol. 76, no. 3, pp. 313–320, 2006. View at Publisher · View at Google Scholar · View at Scopus
  165. K. Lee and T. Heo, “Survival of Bifidobacterium longum immobilized in calcium alginate beads in simulated gastric juices and bile salt solution,” Applied and Environmental Microbiology, vol. 66, no. 2, pp. 869–873, 2000. View at Publisher · View at Google Scholar · View at Scopus
  166. P. Muthukumarasamy and R. A. Holley, “Survival of Escherichia coli O157:H7 in dry fermented sausages containing micro-encapsulated probiotic lactic acid bacteria,” Food Microbiology, vol. 24, no. 1, pp. 82–88, 2007. View at Publisher · View at Google Scholar · View at Scopus
  167. P. Muthukumarasamy and R. A. Holley, “Microbiological and sensory quality of dry fermented sausages containing alginate-microencapsulated Lactobacillus reuteri,” International Journal of Food Microbiology, vol. 111, no. 2, pp. 164–169, 2006. View at Publisher · View at Google Scholar · View at Scopus
  168. K. Kailasapathy, “Survival of free and encapsulated probiotic bacteria and their effect on the sensory properties of yoghurt,” Lebensmittel-Wissenschaft und Technologie, vol. 39, no. 10, pp. 1221–1227, 2006. View at Publisher · View at Google Scholar · View at Scopus
  169. P. Dinakar and V. V. Mistry, “Growth and viability of Bifidobacterium bifidum in cheddar cheese,” Journal of Dairy Science, vol. 77, no. 10, pp. 2854–2864, 1994. View at Scopus
  170. P. Audet, C. Paquin, and C. Lacroix, “Immobilized growing lactic acid bacteria with κ-carrageenan—locust bean gum gel,” Applied Microbiology and Biotechnology, vol. 29, no. 1, pp. 11–18, 1988. View at Publisher · View at Google Scholar · View at Scopus
  171. A. V. Rao, N. Shiwnarain, and I. Maharaj, “Survival of microencapsulated Bifidobacterium pseudolongum in simulated gastric and intestinal juices,” Canadian Institute of Food Science and Technology Journal, vol. 22, no. 4, pp. 345–349, 1989.
  172. T. Y. Sheu and R. T. Marshall, “Improving culture viability in frozen dairy desserts by microencapsulation,” Journal of Dairy Science, vol. 74, supplement 1, article 107, 1991.
  173. J.-P. Arnaud, C. Lacroix, and L. Choplin, “Effect of agitation rate on cell release rate and metabolism during continuous fermentation with entrapped growing—Lactobacillus casei subsp. casei,” Biotechnology Techniques, vol. 6, no. 3, pp. 265–270, 1992. View at Publisher · View at Google Scholar · View at Scopus
  174. A. F. Groboillot, C. P. Champagne, G. D. Darling, D. Poncelet, and R. J. Neufeld, “Membrane formation by interfacial cross-linking of chitosan for microencapsulation of Lactococcus lactis,” Biotechnology and Bioengineering, vol. 42, no. 10, pp. 1157–1163, 1993. View at Publisher · View at Google Scholar · View at Scopus
  175. T. Y. Sheu, R. T. Marshall, and H. Heymann, “Improving survival of culture bacteria in frozen desserts by microentrapment,” Journal of Dairy Science, vol. 76, no. 7, pp. 1902–1907, 1993. View at Scopus
  176. C. L. Hyndman, A. F. Groboillot, D. Poncelet, C. P. Champagne, and R. J. Neufeld, “Microencapsulation of Lactococcus lactis within cross-linked gelatin membranes,” Journal of Chemical Technology and Biotechnology, vol. 56, no. 3, pp. 259–263, 1993. View at Scopus
  177. B. C. Larisch, D. Poncelet, C. P. Champagne, and R. J. Neufeld, “Microencapsulation of Lactococcus lactis subsp. cremoris,” Journal of Microencapsulation, vol. 11, no. 2, pp. 189–195, 1994. View at Scopus
  178. S. Mandal, A. K. Puniya, and K. Singh, “Effect of alginate concentrations on survival of microencapsulated Lactobacillus casei NCDC-298,” International Dairy Journal, vol. 16, no. 10, pp. 1190–1195, 2006. View at Publisher · View at Google Scholar · View at Scopus
  179. J. S. Lee, D. S. Cha, and H. J. Park, “Survival of freeze-dried Lactobacillus bulgaricus KFRI 673 in chitosan-coated calcium alginate microparticles,” Journal of Agricultural and Food Chemistry, vol. 52, no. 24, pp. 7300–7305, 2004. View at Publisher · View at Google Scholar · View at Scopus
  180. A. Homayouni, A. Azizi, M. R. Ehsani, M. S. Yarmand, and S. H. Razavi, “Effect of microencapsulation and resistant starch on the probiotic survival and sensory properties of synbiotic ice cream,” Food Chemistry, vol. 111, no. 1, pp. 50–55, 2008. View at Publisher · View at Google Scholar · View at Scopus
  181. K. Sultana, G. Godward, N. Reynolds, R. Arumugaswamy, P. Peiris, and K. Kailasapathy, “Encapsulation of probiotic bacteria with alginate-starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt,” International Journal of Food Microbiology, vol. 62, no. 1-2, pp. 47–55, 2000. View at Publisher · View at Google Scholar · View at Scopus
  182. N. T. Annan, A. D. Borza, and L. T. Hansen, “Encapsulation in alginate-coated gelatin microspheres improves survival of the probiotic Bifidobacterium adolescentis 15703T during exposure to simulated gastro-intestinal conditions,” Food Research International, vol. 41, no. 2, pp. 184–193, 2008. View at Publisher · View at Google Scholar · View at Scopus
  183. W. Lian, H. Hsiao, and C. Chou, “Survival of bifidobacteria after spray-drying,” International Journal of Food Microbiology, vol. 74, no. 1-2, pp. 79–86, 2002. View at Publisher · View at Google Scholar · View at Scopus
  184. W. Lian, H. Hsiao, and C. Chou, “Viability of microencapsulated bifidobacteria in simulated gastric juice and bile solution,” International Journal of Food Microbiology, vol. 86, no. 3, pp. 293–301, 2003. View at Publisher · View at Google Scholar · View at Scopus
  185. H. Hsiao, W. Lian, and C. Chou, “Effect of packaging conditions and temperature on viability of microencapsulated bifidobacteria during storage,” Journal of the Science of Food and Agriculture, vol. 84, no. 2, pp. 134–139, 2004. View at Publisher · View at Google Scholar · View at Scopus
  186. G. E. Gardiner, P. Bouchier, E. O'Sullivan et al., “A spray-dried culture for probiotic Cheddar cheese manufacture,” International Dairy Journal, vol. 12, no. 9, pp. 749–756, 2002. View at Publisher · View at Google Scholar · View at Scopus
  187. E. Ananta, M. Volkert, and D. Knorr, “Cellular injuries and storage stability of spray-dried Lactobacillus rhamnosus GG,” International Dairy Journal, vol. 15, no. 4, pp. 399–409, 2005. View at Publisher · View at Google Scholar · View at Scopus
  188. A. Picot and C. Lacroix, “Effects of micronization on viability and thermotolerance of probiotic freeze-dried cultures,” International Dairy Journal, vol. 13, no. 6, pp. 455–462, 2003. View at Publisher · View at Google Scholar · View at Scopus
  189. K. O'Riordan, D. Andrews, K. Buckle, and P. Conway, “Evaluation of microencapsulation of a Bifidobacterium strain with starch as an approach to prolonging viability during storage,” Journal of Applied Microbiology, vol. 91, no. 6, pp. 1059–1066, 2001. View at Publisher · View at Google Scholar · View at Scopus
  190. L. Su, C. Lin, and M. Chen, “Development of an Oriental-style dairy product coagulated by microcapsules containing probiotics and filtrates from fermented rice,” International Journal of Dairy Technology, vol. 60, no. 1, pp. 49–54, 2007. View at Publisher · View at Google Scholar · View at Scopus
  191. C. S. Fávaro-Trindade and C. R. F. Grosso, “Microencapsulation of L. acidophilus (La-05) and B. lactis (Bb-12) and evaluation of their survival at the pH values of the stomach and in bile,” Journal of Microencapsulation, vol. 19, no. 4, pp. 485–494, 2002. View at Publisher · View at Google Scholar · View at Scopus
  192. C. Desmond, R. P. Ross, E. O'Callaghan, G. Fitzgerald, and C. Stanton, “Improved survival of Lactobacillus paracasei NFBC 338 in spray-dried powders containing gum acacia,” Journal of Applied Microbiology, vol. 93, no. 6, pp. 1003–1011, 2002. View at Publisher · View at Google Scholar · View at Scopus
  193. A. Madene, M. Jacquot, J. Scher, and S. Desobry, “Flavour encapsulation and controlled release—a review,” International Journal of Food Science and Technology, vol. 41, no. 1, pp. 1–21, 2006. View at Publisher · View at Google Scholar · View at Scopus
  194. K. Kailasapathy, “Microencapsulation of probiotic bacteria: technology and potential applications,” Current Issues in Intestinal Microbiology, vol. 3, no. 2, pp. 39–48, 2002. View at Scopus
  195. C. Santivarangkna, U. Kulozik, and P. Foerst, “Alternative drying processes for the industrial preservation of lactic acid starter cultures,” Biotechnology Progress, vol. 23, no. 2, pp. 302–315, 2007. View at Publisher · View at Google Scholar · View at Scopus
  196. E. Roelans and D. Taeymans, “Effect of drying condition on survival and enzyme activity of microorganisms,” in Engineering and Food Volume 3, W. E. L. Spiess and H. Schubert, Eds., Advanced Process, pp. 559–569, Elsevier Applied Science, London, UK, 1990.
  197. L. J. M. Linders, W. F. Wolkers, F. A. Hoekstra, and K. van't Riet, “Effect of added carbohydrate on membrane phase behaviour and survival of dried Lactobacillus plantarum,” Cryobiology, vol. 35, no. 1, pp. 31–40, 1997. View at Scopus
  198. E. Selmer-Olsen, T. Sørhaug, S.-E. Birkeland, and R. Pohrson, “Survival of Lactobacillus helveticus entrapped in Ca-alginate in relation to water content, storage and rehydration,” Journal of Industrial Microbiology and Biotechnology, vol. 23, no. 2, pp. 79–85, 1999. View at Publisher · View at Google Scholar · View at Scopus
  199. Y. Mille, J. Obert, L. Beney, and P. Gervais, “New drying process for lactic bacteria based on their dehydration behavior in liquid medium,” Biotechnology and Bioengineering, vol. 88, no. 1, pp. 71–76, 2004. View at Publisher · View at Google Scholar · View at Scopus
  200. D. Semyonov, O. Ramon, Z. Kaplun, L. Levin-Brener, N. Gurevich, and E. Shimoni, “Microencapsulation of Lactobacillus paracasei by spray freeze drying,” Food Research International, vol. 43, no. 1, pp. 193–202, 2010. View at Publisher · View at Google Scholar · View at Scopus
  201. A. Martinsen, G. Skjak-Braek, and O. Smidsrod, “Alginate as immobilization material: i. Correlation between chemical and physical properties of alginate gel beads,” Biotechnology and Bioengineering, vol. 33, no. 1, pp. 79–89, 1989. View at Scopus
  202. J. Klein, J. Stock, and K.-D. Vorlop, “Pore size and properties of spherical Ca-alginate biocatalysts,” European Journal of Applied Microbiology and Biotechnology, vol. 18, no. 2, pp. 86–91, 1983. View at Publisher · View at Google Scholar · View at Scopus
  203. H. Eikmeier and H. J. Rehm, “Stability of calcium-alginate during citric acid production of immobilized Aspergillus niger,” Applied Microbiology and Biotechnology, vol. 26, no. 2, pp. 105–111, 1987. View at Scopus
  204. J. C. Ellenton, Encapsulation bifidobacteria [M.S. thesis], University of Guelph, Guelph, Canada, 1998.
  205. M. T. Cook, G. Tzortzis, D. Charalampopoulos, and V. V. Khutoryanskiy, “Microencapsulation of probiotics for gastrointestinal delivery,” Journal of Controlled Release, vol. 162, pp. 56–57, 2012.
  206. C. P. Champagene and P. Fustier, “Microencapsulation for delivery of probiotics and other ingredients in functional dairy products,” Functional Dairy Products, vol. 2, pp. 404–426, 2007.
  207. G. K. Gbassi and T. Vandamme, “Probiotic encapsulation technology: from microencapsulation to release into the gut,” Pharmaceutics, vol. 4, no. 1, pp. 149–163, 2012. View at Publisher · View at Google Scholar · View at Scopus
  208. A. H. King, “Encapsulation of food ingredients: a review of available technology, focussing on hydrocolloid,” in Encapsulation and Controlled Release of Food Ingredients, J. R. Sara and A. R. Gary, Eds., vol. 590 of ACS Symposium Series, pp. 26–39, American Chemical Society, Washington, DC, USA.
  209. K. Kailasapathy, “Encapsulation technologies for functional foods and nutraceutical product development,” CAB Reviews, vol. 4, no. 6, pp. 1–19, 2009. View at Publisher · View at Google Scholar · View at Scopus
  210. P. de Vos, M. M. Faas, M. Spasojevic, and J. Sikkema, “Encapsulation for preservation of functionality and targeted delivery of bioactive food components,” International Dairy Journal, vol. 20, no. 4, pp. 292–302, 2010. View at Publisher · View at Google Scholar · View at Scopus
  211. O. Smidsrod and G. Skjak-Braek, “Alginate as immobilization matrix for cells,” Trends in Biotechnology, vol. 8, no. 3, pp. 71–75, 1990. View at Scopus
  212. S. Overgaard, J. M. Scharer, M. Moo-Young, and N. C. Bols, “Immobilization of hybridoma cells in chitosan alginate beads,” Canadian Journal of Chemical Engineering, vol. 69, no. 2, pp. 439–443, 1991. View at Scopus
  213. C. Lacroix, C. Paquin, and J.-P. Arnaud, “Batch fermentation with entrapped growing cells of Lactobacillus casei. Optimization of the rheological properties of the entrapment gel matrix,” Applied Microbiology and Biotechnology, vol. 32, no. 4, pp. 403–408, 1990. View at Scopus
  214. A. W. Adamson, Physical Chemistry of Surfaces, Wiley, New York, NY, USA, 1982.
  215. T. Heidebach, P. Först, and U. Kulozik, “Microencapsulation of probiotic cells by means of rennet-gelation of milk proteins,” Food Hydrocolloids, vol. 23, no. 7, pp. 1670–1677, 2009. View at Publisher · View at Google Scholar · View at Scopus
  216. T. Heidebach, P. Först, and U. Kulozik, “Transglutaminase-induced caseinate gelation for the microencapsulation of probiotic cells,” International Dairy Journal, vol. 19, no. 2, pp. 77–84, 2009. View at Publisher · View at Google Scholar · View at Scopus
  217. Y. D. Livney, “Milk proteins as vehicles for bioactives,” Current Opinion in Colloid and Interface Science, vol. 15, no. 1-2, pp. 73–83, 2010. View at Publisher · View at Google Scholar · View at Scopus
  218. J. Yáñez-Fernández, E. G. Ramos-Ramírez, and J. A. Salazar-Montoya, “Rheological characterization of dispersions and emulsions used in the preparation of microcapsules obtained by interfacial polymerization containing Lactobacillus sp,” European Food Research and Technology, vol. 226, no. 5, pp. 957–966, 2008. View at Publisher · View at Google Scholar · View at Scopus
  219. A. Dimantov, M. Greenberg, E. Kesselman, and E. Shimoni, “Study of high amylose corn starch as food grade enteric coating in a microcapsule model system,” Innovative Food Science and Emerging Technologies, vol. 5, no. 1, pp. 93–100, 2003. View at Publisher · View at Google Scholar · View at Scopus
  220. M. J. Pikal, “Freeze-drying of protein, part-I: process design,” PharmTech International, vol. 1, pp. 37–43, 1991.
  221. A. R. Donthidi, R. F. Tester, and K. E. Aidoo, “Effect of lecithin and starch on alginate-encapsulated probiotic bacteria,” Journal of Microencapsulation, vol. 27, no. 1, pp. 67–77, 2010. View at Publisher · View at Google Scholar · View at Scopus
  222. N. Huyghebaert, A. Vermeire, P. Rottiers, E. Remaut, and J. P. Remon, “Development of an enteric-coated, layered multi-particulate formulation for ileal delivery of viable recombinant Lactococcus lactis,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 61, no. 3, pp. 134–141, 2005. View at Publisher · View at Google Scholar · View at Scopus
  223. H. Hayashi, E. Kumazawa, Y. Saeki, and Y. Ishioka, “Continuous vaccum dryer for energy saving,” Drying Technology, vol. 1, no. 2, pp. 275–284, 1983. View at Scopus
  224. Z. L. Wang, W. H. Finlay, M. S. Peppler, and L. G. Sweeney, “Powder formation by atmospheric spray-freeze-drying,” Powder Technology, vol. 170, no. 1, pp. 45–52, 2006. View at Publisher · View at Google Scholar · View at Scopus
  225. H. Durand and J. Panes, “Particles containing coated living micro-organisms, and method for producing same,” US patent and Trademark Office, N20030109025.
  226. V. Truong, D. A. Clare, G. L. Catignani, and H. E. Swaisgood, “Cross-linking and rheological changes of whey protein treated with microbial transglutaminase,” Journal of Agricultural and Food Chemistry, vol. 52, no. 5, pp. 1170–1176, 2004. View at Scopus
  227. B. R. Bhandari, N. Datta, B. R. D'Arcy, and G. B. Rintoul, “Co-crystallization of honey with sucrose,” Food Science and Technology, vol. 31, no. 2, pp. 138–142, 1998. View at Scopus
  228. A. Hedges and C. McBride, “Utilization of β-cyclodextrin in food,” Cereal Foods World, vol. 44, no. 10, pp. 700–704, 1999. View at Scopus
  229. F. T. Gentile, E. J. Doherty, D. H. Rein, M. S. Shoichet, and S. R. Winn, “Polymer science for macroencapsulation of cells for central nervous system transplantation,” Reactive Polymers, vol. 25, no. 2-3, pp. 207–227, 1995. View at Scopus
  230. Z. Dong, Q. Wang, and Y. Du, “Alginate/gelatin blend films and their properties for drug controlled release,” Journal of Membrane Science, vol. 280, no. 1-2, pp. 37–44, 2006. View at Publisher · View at Google Scholar · View at Scopus
  231. K. I. Draget, K. Steinsvåg, E. Onsøyen, and O. Smidsrød, “Na+ and K+alginate; effect on Ca2+-gelation,” Carbohydrate Polymers, vol. 35, no. 1-2, pp. 1–6, 1998. View at Scopus
  232. T. Harnsilawat, R. Pongsawatmanit, and D. J. McClements, “Characterization of β-lactoglobulin-sodium alginate interactions in aqueous solutions: a calorimetry, light scattering, electrophoretic mobility and solubility study,” Food Hydrocolloids, vol. 20, no. 5, pp. 577–585, 2006. View at Publisher · View at Google Scholar · View at Scopus
  233. L. T. Hansen, P. M. Allan-Wojtas, Y.-L. Jin, and A. T. Paulson, “Survival of Ca-alginate microencapsulated Bifidobacterium spp. in milk and simulated gastrointestinal conditions,” Food Microbiology, vol. 19, no. 1, pp. 35–45, 2002. View at Publisher · View at Google Scholar · View at Scopus
  234. G. F. Fanta, C. A. Knutson, K. S. Eskins, and F. C. Felker, “Starch microcapsules for delivery of active agents,” US patent. 2001, 6, 238, 677.
  235. S. G. Haralampu, “Resistant starch—a review of the physical properties and biological impact of RS3,” Carbohydrate Polymers, vol. 41, no. 3, pp. 285–292, 2000. View at Publisher · View at Google Scholar · View at Scopus
  236. C. J. Malm, J. Emerson, and G. D. Hiatt, “Cellulose acetate phthalate as an enteric coating material,” Journal of the American Pharmaceutical Association, vol. 40, no. 10, pp. 520–525, 1951. View at Scopus
  237. S. Gaaloul, S. L. Turgeon, and M. Corredig, “Influence of shearing on the physical characteristics and rheological behaviour of an aqueous whey protein isolate-κappa-carrageenan mixture,” Food Hydrocolloids, vol. 23, no. 5, pp. 1243–1252, 2009. View at Publisher · View at Google Scholar · View at Scopus
  238. Y. Yuguchi, T. T. T. Thuy, H. Urakawa, and K. Kajiwara, “Structural characteristics of carrageenan gels: temperature and concentration dependence,” Food Hydrocolloids, vol. 16, no. 6, pp. 515–522, 2002. View at Publisher · View at Google Scholar · View at Scopus
  239. M. R. Mangione, D. Giacomazza, D. Bulone, V. Martorana, and P. L. san Biagio, “Thermoreversible gelation of κ-Carrageenan: relation between conformational transition and aggregation,” Biophysical Chemistry, vol. 104, no. 1, pp. 95–105, 2003. View at Publisher · View at Google Scholar · View at Scopus
  240. H. P. Sarett, “Safety of carrageenan used in foods,” The Lancet, vol. 1, no. 8212, pp. 151–152, 1981. View at Scopus
  241. Y. Doleyres, I. Fliss, and C. Lacroix, “Continuous production of mixed lactic starters containing probiotic using immobilised cell technology,” Biotechnology Progress, vol. 20, no. 1, pp. 145–150, 2004. View at Publisher · View at Google Scholar · View at Scopus
  242. J. Klien and D. K. Vorlop, “Immobilisation technique cells,” in Comprehensive Biotechnology, M. Moo-Yong, C. L. Cooney, and A. E. Humphery, Eds., pp. 542–550, Pergamon Press, Oxford, UK, 1985.
  243. S. Rokka and P. Rantamäki, “Protecting probiotic bacteria by microencapsulation: challenges for industrial applications,” European Food Research and Technology, vol. 231, no. 1, pp. 1–12, 2010. View at Publisher · View at Google Scholar · View at Scopus
  244. A. A. Reid, C. P. Champagne, N. Gardner, P. Fustier, and J. C. Vuillemard, “Survival in food systems of Lactobacillus rhamnosus R011 microentrapped in whey protein gel particles,” Journal of Food Science, vol. 72, no. 1, pp. M31–M37, 2006. View at Publisher · View at Google Scholar · View at Scopus