About this Journal Submit a Manuscript Table of Contents
Journal of Environmental and Public Health
Volume 2012 (2012), Article ID 713696, 52 pages
http://dx.doi.org/10.1155/2012/713696
Review Article

Endocrine-Disrupting Chemicals: Associated Disorders and Mechanisms of Action

Study Centre for Carcinogenesis and Primary Prevention of Cancer, Department of Radiotherapy and Experimental Cancerology, Ghent University Hospital, De Pintelaan 185 3K3, 9000 Ghent, Belgium

Received 1 March 2012; Revised 10 May 2012; Accepted 10 May 2012

Academic Editor: David O. Carpenter

Copyright © 2012 Sam De Coster and Nicolas van Larebeke. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The incidence and/or prevalence of health problems associated with endocrine-disruption have increased. Many chemicals have endocrine-disrupting properties, including bisphenol A, some organochlorines, polybrominated flame retardants, perfluorinated substances, alkylphenols, phthalates, pesticides, polycyclic aromatic hydrocarbons, alkylphenols, solvents, and some household products including some cleaning products, air fresheners, hair dyes, cosmetics, and sunscreens. Even some metals were shown to have endocrine-disrupting properties. Many observations suggesting that endocrine disruptors do contribute to cancer, diabetes, obesity, the metabolic syndrome, and infertility are listed in this paper. An overview is presented of mechanisms contributing to endocrine disruption. Endocrine disruptors can act through classical nuclear receptors, but also through estrogen-related receptors, membrane-bound estrogen-receptors, and interaction with targets in the cytosol resulting in activation of the Src/Ras/Erk pathway or modulation of nitric oxide. In addition, changes in metabolism of endogenous hormones, cross-talk between genomic and nongenomic pathways, cross talk with estrogen receptors after binding on other receptors, interference with feedback regulation and neuroendocrine cells, changes in DNA methylation or histone modifications, and genomic instability by interference with the spindle figure can play a role. Also it was found that effects of receptor activation can differ in function of the ligand.

1. Introduction

The objectives of the present paper include to give an overview of the wide spectrum of substances having endocrine-disrupting properties; to list a series of observations suggesting that endocrine disruptors contribute to human health problems, however, without attempting to bring an all-inclusive review for each individual substance accompanied by a final conclusion; to give an overview of the many mechanisms on which endocrine disruption rests.

2. Incidence and Prevalence of Health Problems associated with Endocrine Disruption Have Increased

Epidemiological data show increases in incidence and prevalence of diseases associated with endocrine-disrupting chemicals, such as breast, prostate, and testis cancer, diabetes, obesity, and decreased fertility over the last 50 years. A short overview of supporting data is presented below. These increases might partly reflect an increase in the likelihood of diagnosis and certainly do not constitute proof of the impact of endocrine-disrupting chemicals. Time trends and ecological studies are not well suited to study a possible association between exposure to endocrine disrupting chemicals and risk of disease, as assessment of exposure is extremely difficult. The data on time trends are, however, consistent with such an impact, as are data on the incidence or prevalence of some diseases in migrants and on differences in function of geographical area. Huge geographical differences in cancer incidence are well documented in the report “Cancer incidence in five continents, volume IX” of the International Agency for Research on Cancer [1], often showing higher risks of hormone-related cancers in more industrialized countries. In France, cancer mortality among migrants is positively associated with the Human Development Index of the country-of-birth [2]. In migrants to California, time since immigration is associated with convergence of the odds for mortality from cancer and from some other diseases to that of the native population [3]. In the Netherlands (for cancer mortality) [4], in British Columbia (for cancer incidence) [5], in the San Francisco Bay area (for risk of breast cancer) [6], and in Hawai (for cancer incidence among Japanese) [7], convergence towards the rates of the native population was reported. A systematic review and meta-analysis revealed that prevalence of obesity is higher among migrant Asian Indians than among Indians living in India [8]. In India, migration from rural to urban area’s is associated with an increase in the prevalence of diabetes and obesity [9].

2.1. Cancer

In Great Britain, from 1978 to 2007, the overall age-standardized incidence rate of cancer has increased by 25%, an increase of 14% in men and a 32% increase in women [10] (see Figure 1).

713696.fig.001
Figure 1: Age standardized (European) incidence rates for all cancers excluding nonmelanoma skin cancer, Great Britain 1975–2008. Figure taken from the web-site of the UK Cancer in Research organisation, accessed on 18/2/2011 [10].

According to Great Britain statistics, breast and prostate cancer incidence have a higher relative increase in incidence. Prostate cancer incidence has almost tripled from 33 per 100,000 in 1975 to 97 per 100,000 in 2007, while the incidence of breast cancer for women increased by 57%, from 77 per 100,000 in 1978 to 120 per 100,000 in 2007 (see Figures 2 and 3) [10]. These trends are being observed worldwide [11, 12]. Also the incidence of testis cancer has increased worldwide [13]. The increase in cancer incidence can partly be explained by the introduction of screening, which will result in a transient increase in incidence and a stage shift to earlier stages, microinvasive, and in situ cancers in the steady state situation [14]. It is, however very unlikely that early screening explains the entire rise in cancer incidence, because of the progressive nature of the cancer process, which leads almost always to clinically evident disease. Also, in the United States Incidence rates for all childhood cancers combined increased 0.6% per year from 1975 to 2002 [15], while cancer is a disease which, since many decades, is diagnosed more easily in children compared to elderly because of the particular impact of the disease on children.

713696.fig.002
Figure 2: Age standardized (European) incidence and mortality rates for breast cancer in females in Great Britain 1975–2008. Figure taken from the web-site of the UK Cancer Research organisation, accessed on 18/2/2011 [10].
713696.fig.003
Figure 3: Age standardized (European) incidence and mortality rates for prostate cancer in males in Great Britain 1975–2008. Figure taken from the web-site of the UK Cancer Research organisation, accessed on 18/2/2011 [10].
2.2. Diabetes

The United States Centre for Disease Control and Prevention (CDC) reports percentages of diabetes incidence of 0.93% in 1958 against 6.29% in 2008, which is a more than 6-fold increase, as is shown in Figure 4 [16].

713696.fig.004
Figure 4: Number and percentage of US population with diagnosed diabetes 1958–2008, according to the CDC. Figure taken from the web-site of the Centers for Disease Control and Prevention, accessed on 18/2/2011 [16].
2.3. Obesity

The CDC reports an increase of obesity prevalence (BMI ≥ 30) in US adults (20–74 years) from 13.4% in 1960–1962 to 35.1% in 2005-2006. Extreme obesity (BMI ≥ 40) has increased from 0.9% to 6.2% in the same period. Figure 5 shows obesity trends among US residents over the last 50 years [17].

713696.fig.005
Figure 5: rends in overweight, obesity and extreme obesity over the last 50 years in the U.S, according to the CDC. Figure taken from the web-site of the Centers for Disease Control and Prevention, accessed on 18/2/2011 [17].
2.4. Metabolic Syndrome

In the United States, an increase in the prevalence of metabolic syndrome has been reported from 4.2% to 6.4% in adolescents, and from 23.1% to 26.7% in adults [18, 19].

2.5. Decreased Fertility

In men fertility has been decreasing in the last decades, at least in some countries. Observations by Comhaire and colleagues [75] on candidate sperm donors show that this has been the case in Flanders (see Figure 6). Similar observations were made in Denmark [76], in France [77], and in the United Kingdom [78]. From a thorough analysis of 101 studies published 1934–1996 Swan et al. [79] concluded that sperm quality declined in the United States, Australia, and several countries in Europe. It seems likely that a decrease in semen quality plays a role in the recent decline in fertility rates [80]. Travison et al. [81] have recently reported declining levels of testosterone in US men of 1% per year, the same rate of decline seen for sperm concentrations.

713696.fig.006
Figure 6: Sperm morphology for candidate sperm donors presenting themselves to the department of andrology of Ghent University, based on the data of Comhaire et al. [26].

However, sperm quality is only one of several parameters determining human fertility. In terms of fertility of couples, in Sweden a transient increase in subfertility was seen in the early 1990s, but generally fecundability increased in Sweden between 1983 and 2002 [82]. As to ectopic pregnancies, in a Norwegian county population-based study age-adjusted ectopic pregnancy incidence rates increased from 4.3 to 16.0 per 10,000 women-years over the period 1970–1974 to 1990–1994 and declined to 8.4 per 10,000 women-years in 2000–2004 [83]. Joffe [84] found that couple fertility had increased in Britain, except for slight dips during 1976–80 and 1986–90.

Sallmén et al. [85] consider that, with the exception of rare settings in which the factors affecting reproductive choices have not changed, it is probably impossible to identify biologic changes in fertility of humans over recent decades.

The sex ratio (the ratio of the number of males born and the number of females) has decreased in many countries and most recently in the United States and Japanese populations [86].

3. Many Exposures Are associated with Endocrine Disruption

An endocrine-disrupting substance is a compound that alters the hormonal and homeostatic systems. Endocrine disruptors act via nuclear receptors, nonnuclear steroid hormone receptors (e.g., membrane ERs), nonsteroid receptors (e.g., neurotransmitter receptors such as the serotonin receptor, dopamine receptor, norepinephrine receptor), orphan receptors [e.g., aryl hydrocarbon receptor (AhR), an orphan receptor], enzymatic pathways involved in steroid biosynthesis and/or metabolism, and numerous other mechanisms that converge upon endocrine and reproductive systems. The most important aspects of endocrine disruption are related to xenoestrogens, antiestrogens, antiandrogens, disruption of thyroid function, and disruption of corticoid function, and other metabolic effects.

The group of molecules identified as endocrine disruptors is highly heterogeneous and includes synthetic chemicals used as industrial solvents/lubricants and their by-products, plastic compounds, plasticizers, pesticides, pharmaceutical agents, and heavy metals such as cadmium and lead.

3.1. Xenoestrogens-, Xenoandrogens, Antiestrogens, and Antiandrogens

Many substances have estrogenic, androgenic, antiestrogenic, or antiandrogenic properties. Table 1 shows a (certainly incomplete) list of such substances. Quite often the same substance has more than one of these properties.

tab1
Table 1: Some xenoestrogens, xenoandrogens, antiestrogens, and antiandrogens.

3.1.1. Xenoestrogens

Many substances display estrogenic properties. These xenoestrogens (see Table 1) include phytoestrogen isoflavonoids, flavonoids and terpenoids and the mycotoxin zearalenone and its metabolites, and also many industrial chemicals [99]. Such man-made xeno-estrogens include polychlorinated biphenyls (PCBs); polybrominated biphenyl ethers (PBDEs), some endocrine disrupting derivatives of which occur also naturally [26]; phthalates; alkylphenols (degradation products of alkylphenolpolyethoxylates, surfactants used in cleaning detergents); bisphenol A, used in the production of polycarbonate plastic and epoxy resins; UV filters; the fragrance galaxolide; preservatives and pesticides. Of 200 pesticides tested for agonism to two human estrogen receptor (hER) subtypes, hERalfa and hERbeta by highly sensitive transactivation assays using Chinese hamster ovary cells, 47 and 33 showed hERalfa- and hERbeta-mediated estrogenic activities, respectively [63]. Several polycyclic aromatic hydrocarbons, mainly pollutants produced by incomplete combustion, were also shown to have estrogenic activity [100], for example, 3-Methylcholanthrene was shown to be estrogenic in MCF-7 human breast cancer cells [28]. Also, several metals were observed to have oestrogenic effects [101, 102], and certain cadmium-containing nanocrystals might even be potent estrogens [103].

Also complex mixtures of pollutants occurring in the environment were shown to have estrogenic activity. This was for instance shown for diesel exhaust particles [104].

Food constitutes the main exposure route for humans [99].

Xeno-oestrogens differ strongly in their oestrogenic potency, and assessing the health risks associated with exposure to xeno-estrogens is very complex [99].

3.1.2. Xenoandrogens

Xenoandrogenic activity is less frequently reported than xenoestrogenic activity. There are, however, several authors describing xenoandrogenic activity (Table 1). For instance, Delor 103, a commercial mixture of PCB congeners, was reported to have androgenic activity in a bioluminescent yeast strain [51]. Using a Yeast androgen assay expressing the human androgen receptor, Kunz and Fent [55] tested 18 UV filters for androgenic activity and found that benzophenone-2 and homosalate produced full dose-response curves, while octyl-methoxycinnamate, octyl salicylate, octocrylene, and isopentyl-4-methoxycinnamate displayed a partly agonistic behaviour indicated by submaximal dose-response curves.

3.1.3. Antiestrogens

Many substances binding on estrogen receptors have antiestrogenic effects rather than estrogenic effects. In recent years, many substances (Table 1) and more complex exposures were found to have antiestrogenic activity on animals or in other experimental studies. Antiestrogenic effects were observed for methoxylated brominated diphenyl ethers (primarily of natural origin in the marine environment) (in reporter gene assays) [26]; 20S-protopanaxadiol, a major gastrointestinal metabolic product of ginsenosides (on MCF7 human breast cancer cells) [20]; genistein, a phytoestrogen, particularly abundant in soybeans that can bind estrogen receptors and sex hormone binding proteins, exerting (in vivo in animals) both estrogenic and antiestrogenic activity [25]; the polybrominated diphenyl ethers hepta-BDE and 6-OH-BDE-47 (in vitro) [43, 44]; the UV-absorber benzophenone-4 (in the liver of zebra fish) [58]; of 18 UV filters, 13 (4-Methylbenzylidene camphor, 3-Benzylidene camphor, Benzophenone-3, Benzophenone-4, Isopentyl-4-methoxycinnamate, Octyl-methoxycinnamate, Homosalate, Octocrylene, Benzyl salicylate, Phenyl salicylate, Octyl salicylate, Para amino-benzoic acid and Octyl dimethyl para amino benzoate) completely inhibited the activity of estradiol at the highest concentrations tested and produced full dose-response curves (in yeast carrying a human estrogen receptor), whereas one (Ethoxylated ethyl 4-amino benzoate) had a less pronounced activity [55]; polycyclic musks (on human U2OS cells with an estrogen receptor linked reporter gene) [60]; the di-ortho PCB congeners 38, 153, and 180 and the mono-ortho PCB 118 (on MCF-7-BUS cells in vitro) [52]; polychlorinated biphenyl 126 and phenanthrene (in the liver of fish) [53]; the pyrethroid insecticide metabolite 3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropne carboxylic acid (DCCA), the pyrethroid insecticides cycloprothrin, etofenprox, the pyrethroid insecticide metabolite 3-phenoxybenzoic acid, the pyrethroid insecticides cyuflthrin and permethrin (in decreasing order, on reporter gene assays) [62]; the pyrethroid insecticide tetramethrin (on female rats in vivo) [74]; some nonylphenol isomers (on MVLN cells, MCF -7 human breast carcinoma cells with an estrogen receptor controlled luciferase reporter gene) [40]; dichlorostyrene (in the E-screen assay on MCF-7 cells) [38]; benzotriazole, an anticorrosive agent well known for its use in aircraft de-icing and antifreeze fluids but also used in dishwasher detergents (in a recombinant yeast estrogen assay, but not in vivo in adult fathead minnows) [34].

Also complex mixtures of pollutants occurring in the environment were shown to have antiestrogenic activity. This was observed (on yeast) for disinfection by-products formed during chlorination of waste water, especially 2,4-diphenylcrotonaldehyde, a relatively potent antiestrogenic chemical [113]; extracts from soils collected near highways (on MVLN cells) [114]; gaseous and particulate fractions of ambient air (on MVLN cells) [115]; extracts from sedimentation dust from subway stations (in yeast) [116]; extracts of motorcycle exhaust particulate (in MCF-7 human breast cancer cells and immature female rats) [117]; PAH mixtures in by-products of manufactured gas plant (MGP) residues [118]. Interestingly, some mixtures of polychlorinated biphenyls had antiestrogenic activity in MCF-7-BUS cells, whereas other mixtures, containing some of the same PCB congeners, had not [52].

The structural basis for estrogenic or rather antiestrogenic activities of polybrominated diphenyl ethers was studied by Yang et al. [119]. They showed, with docking studies on the human estrogen receptor alpha, that some of the PBDE compounds with antiestrogenic activity extended into the channel of the estrogen receptor (ER), which is usually occupied by the alkylamine side chain of the ER antagonists raloxifene and 4-hydroxytamoxifen, while most PBDE compounds without antiestrogenic activity adopted binding modes similar to that of ER agonist 17beta-estradiol (E2), located in the binding cavity and which did not protrude into the channel.

The omnipresence of antiestrogenic pollutants was demonstrated by Sanfilippo et al. [120] who, based on the yeast estrogen screen (YES) and chemical analysis (GC/MS), found antiestrogenic activity due to the presence of bis(2-ethylhexyl) phthalate (DEHP) in ultrapure water for laboratory use.

According to Bonefeld-Jorgensen [121], dioxins exert an antiestrogenic effect on Greenlandic Inuit.

Some phytoestrogen, such as flavones and isoflavones, have antiestrogenic effects through inhibition of the aromatase enzyme converting testosterone to estradiol [122]. Conceivably, some man-made substances or pollutants might also have antiestrogenic effects through inhibition of the aromatase [123].

Estradiol inhibits gonadotropin release in men by an action at the hypothalamus and pituitary [124]. Higher internal exposure to antiestrogens might contribute, through inhibition of hypothalamic-pituitary feed-back mechanisms, to higher sex hormone concentrations. Recently, we found in some industrial areas in Flanders higher sex hormone concentrations in male adolescents (see reports on Flemish biomonitoring on http://www.milieu-en-gezondheid.be/onderzoek/luik%2021/hotspots/genkzuid/resultaten/STP%20MG%20Resultatenrapport%20Genk-Zuid%20-%20definitief.pdf, http://www.milieu-en-gezondheid.be/onderzoek/luik%2021/hotspots/menen/resultaten/STP%20MG%20eindrapport%20Menen%20DEF.pdf).

3.1.4. Antiandrogens

Many substances binding on androgen receptors have antiandrogenic effects rather than androgenic effects. Table 1 shows some data on substances for which antiandrogenic effects were observed. Other data are mentioned below.

The polychlorinated biphenyl PCB#138 showed an antiandrogenic effect on androgen receptor activity in transiently cotransfected Chinese Hamster Ovary cells [54]. Using the stable prostatic cell line PALM, which contains a human androgen receptor (hAR) expression vector and the reporter MMTV-luciferase, Lemaire et al. [64] found several organochlorine pesticides to have antiandrogenic activity (Table 1). Of 18 UV filters tested, 16 substances (see Table 1) displayed antiandrogenic activity and showed full dose-response curves with complete inhibition of dihydrotestosterone activity in a Yeast androgen assay expressing the human androgen receptor [55]. The antiandrogenic activities of phenyl- and benzyl salicylate, benzophenone-1 and -2, and of 4-hydroxybenzophenone were higher than that of flutamide, a known hAR antagonist. For the DDT metabolite Dichlorodiphenyldichloroethylene (p,p′-DDE) and for 23 pesticides intensively used in Europe in recent years, antiandrogenic activity (Table 1) was reported [66]. The antiandrogenic activity of these pesticides was observed in vitro on MDA-kb2 cells, human breast cancer cells stably transfected with a firefly luciferase reporter gene that is driven by an androgen-response element-containing promoter [66]. Of 200 pesticides tested for antagonism to a human androgen receptor (hAR) by highly sensitive transactivation assays using Chinese hamster ovary cells, 66 of 200 pesticides exhibited antiandrogenic activity [63]. In particular, the antiandrogenic activities of two diphenyl ether herbicides, chlornitrofen and chlomethoxyfen, were higher than those of vinclozolin and p,p′-dichlorodiphenyl dichloroethylene, known AR antagonists [63]. The antiandrogenic activity of the organophosphorus pesticide fenthion was observed to be similar in magnitude to that of the antiandrogenic drug flutamide in an androgen-responsive element luciferase-reporter-responsive assay using NIH3T3 cells [71]. Whereas the insecticide permethrin might have estrogen-like effects on female rats, it showed antiandrogen-like effects on males [69]. Polycyclic musks were found to have antiandrogenic effects (on human U2OS cells with an androgen receptor linked reporter gene) [60]. Some methoxylated brominated diphenyl ethers (primarily of natural origin in the marine environment) were shown to be antiandrogenic in reporter gene assays [26].

Also complex mixtures of pollutants occurring in the environment were shown to have antiandrogenic activity. This was observed for some soils collected near highways (on MVLN cells) [114]; gaseous and particulate fractions of ambient air (on MVLN cells) [115]; diesel exhaust particles (in vivo in animals) [104].

3.2. Disruption of Thyroid Function

The thyroid hormone (TH) system with its main hormones tetraiodo-L-thyronine (T4) and the physiologically active 3,3,5-triiodo-L-thyronine (T3) are crucial regulators of many developmental processes (e.g., brain, inner ear, and bone development as well as bone remodelling) and physiological functions such as carbohydrate-, lipid-, and protein metabolism and homeostasis of the metabolic rate. Deficiencies can lead to important pathologies [125, 126]. Many chemical substances can contribute to disruption of the thyroid gland function, including PCBs [127, 128], the detergent derivative nonylphenol [126], the plasticiser dibutylphthalate [126], the plastic component bisphenol A [126, 129], some pesticides [126], the antibacterial agent triclosan [130], polybrominated biphenyls [131133], perfluorinated compounds [134, 135], and some UV-filters [126]. Disruption of thyroid function happens to a large extent at the level of prereceptor regulation of ligand availability [125, 136, 137].

3.3. Disruption of Corticoid Function and Other Metabolic Effects

Endocrine disruption can also affect corticoid hormonal function, as observed for hexachlorobenzene in Wistar rats [138]. Hexachlorobenzene was also observed to induce oxidative stress, disruption of arachidonic acid metabolism, and porphyria [139, 140].

3.4. Activation of the Aryl Hydrocarbon Receptor

The aryl hydrocarbon receptor (AhR) regulates enzymes important to the metabolism of both endogenous substances (e.g., hormones) and exogenous substances, involved in both the detoxification and bioactivation of xenobiotics [143]. However, the AhR has been shown to regulate a much wider spectrum of cellular processes including cell proliferation, differentiation, apoptosis, and intercellular communication [144, 145]. TCDD, a prototype ligand to the AhR, is one of the most potent carcinogens [146] and designated by IARC as a human carcinogen. Activation of the AhR receptor probably plays an important role in tumorpromotion [144, 147]. Dioxins and other lipophylic dioxin-like substances constitute an important risk to human health through their presence in food items [148]. Also, activation of the AhR by polycyclic aromatic hydrocarbons might be a major toxic mode of action of air pollution particulate matter. Andrysik et al. [149] found that polycyclic aromatic hydrocarbons and their polar derivatives present in the organic fraction of air pollution were potent inducers of a range of AhR-mediated responses, including induction of the AhR-mediated transcription, such as cytochrome P450 1A1/1B1 expression, and the AhR-dependent cell proliferation. Importantly, these toxic events were observed at doses one order of magnitude lower than DNA damage. The AhR-mediated activity of the neutral fraction was linked to PAHs and their derivatives, as polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls, were only minor contributors to the overall AhR-mediated activity.

3.5. Internal Exposure to Endocrine Disrupting Chemicals Is Not Negligible

Andersen et al. [150] observed that occupational exposure to estrogen-like pesticides can result in detectable impacts on hormonal activity in the blood. Also, it has been shown that, in human placentas, xenoestrogenic activity amounted to 9.27% of the endogenous estrogenic activity in terms of the geometric mean, and to 9.84% in terms of the median value according to the MCF-7 breast cancer cell-based E-Screen [151]. Furthermore, Bonefeld-Jorgensen et al. [152] found that serum levels of the polychlorobiphenyl CB-153 and p,p′-DDE alone were not sufficient to predict xenoestrogenic serum activity, and that other xenoestrogens must have been present. In 2006, a bisphenol A (BPA) Expert Panel Consensus Statement was released by NIEHS/EPA, stating that most humans are exposed to BPA (95% of human urines are positive in the assay of the USA Center for Disease Control (CDC)). Unconjugated BPA in human serum is in the 0.3 to 0.5 ng/mL range, and the concentration of BPA in fetal serum, umbilical cord blood, amniotic fluid, and placenta indicate that the developing fetus is chronically exposed to BPA in the 0.7–9.2 ng/mL range (unconjugated BPA) [36].

4. Observations Indicating That Endocrine Disruptors Contribute to Health Deficits

4.1. Cancer
4.1.1. Breast Cancer

Many observations point to the contribution of endocrine disruptors in the development of breast cancer. The 2009 Endocrine Society Scientific statement entails considerable evidence indicating that endocrine disruptors contribute to the risk of breast cancer [153].

4 . 1 . 1 . 1 . Experimental Studies
Biological effects favouring malignant transformation were observed on human breast cells for: the pesticide hexachlorobenzene [154]; the organophosphorus pesticides malathion and parathion [155]; PCBs [156, 157]; bisphenol A [158, 159]; cadmium [160162]; butyl benzyl phthalate [163]; organochlorine pesticides (p,p′-DDD plus p,p′-DDE plus o,p′-DDE plus aldrin plus dieldrin) [164]; cosmetics benzyl salicylate, benzyl benzoate and butylphenylmethylpropional (Lilial) [165]; nitrite [166].
The antiandrogenic pesticide vinclozolin induced, through epigenetic changes, a number of disease states or tissue abnormalities, including cancer of the breast, in adult rats from the F1 generation and all subsequent generations examined (F1–F4) [167].
Animal experiments showed that in utero exposure to dioxins induced alterations in breast development and increased susceptibility for mammary cancer development [168]. Mice [169] and rats [170] exposed perinatally to BPA showed preneoplastic lesions (intraductal hyperplasias) in mammary tissue and such rats developed carcinoma in situ. Rats exposed perinatally [171] or through lactation [172] to BPA showed an increased susceptibility to neoplastic development. Perinatal exposure to environmentally relevant levels of BPA induced an increase in the number of terminal end buds in the Mouse mammary gland and by 6 months of age, the mammary glands showed a dramatic expansion of the ductal network with a significant increase in terminal ducts and alveolar structures relative to the control [173]. Terminal end buds are the structures in which mammary cancer originates in both rodents and humans [174].

4 . 1 . 1 . 2 . Epidemiological Studies
Table 2 resumes the main data from a number of epidemiological studies. Below some other data and additional details of some of these studies are mentioned.
López-Carrillo et al. [89] reported that exposure to diethyl phthalate may be associated with increased risk of breast cancer, whereas exposure to the parent phthalates of monobenzyl phthalate and mono (3-carboxypropyl) phthalate might be negatively associated.
In a prospective study on young women, from Oakland, California, who provided blood samples in the period 1959–1967, high levels of serum p,p′-DDT predicted a statistically significant 5-fold increased risk of breast cancer among women who were born after 1931 [98]. These women were under 14 years of age in 1945, when DDT came into widespread use, and mostly less than 20 years.
DDT use peaked. These findings suggest that exposure to p,p′-DDT early in life may increase breast cancer risk [98]. In a systematic review and meta-analysis of studies concerning cyclodiene insecticides and breast cancer, Khanjani et al. [175] found a significant association between heptachlor and breast cancer, but no significant association with other cyclodiene insecticides. Mills and Yang [176] performed a registry-based case-control study of breast cancer in farm labor union members in California. Controlling for covariates, adjusted ORs (and 95% CIs) for breast cancer in quartiles of pesticide use were 1.00, 1.30 (0.73–2.30), 1.23 (0.67–2.27), and 1.41 (0.66–3.02). Chlordane, malathion, and 2,4-D were associated with increased risk. Risk associated with chemical use was stronger in younger women, those with early-onset breast cancer, and those diagnosed earlier [176].

tab2
Table 2: Some epidemiological studies on breast cancer.
4.1.2. Prostate Cancer

4 . 1 . 2 . 1 . Experimental Studies
As noted by Gail Prins [177], who contributed importantly to the study of prostate carcinogenesis, there is substantial evidence from animal models that specific endocrine-disrupting compounds may influence the development or progression of prostate cancer. In large part, these effects appear to be linked to interference with estrogen signaling, either through interacting with ERs or by influencing steroid metabolism and altering estrogen levels within the body. Studies in animal models show augmentation of prostate carcinogenesis with several environmental endocrine disruptors including diethylstilboestrol, PCBs, cadmium, ultra violet filters, Bisphenol A, and arsenic. Importantly, there appears to be heightened sensitivity of the prostate to these endocrine disruptors during the critical developmental windows including in utero and neonatal time points as well as during puberty. Thus infants and children may be considered a highly susceptible population for endocrine-disrupting exposures and increased risk of prostate cancers with aging [177].
Bisphenol A, a plastic component that can be considered a model agent for endocrine disruption, was shown to induce changes in differentiation patterns, cell proliferation, and size in the prostate, changes that are probably associated with an increase in cancer risk [178].
Exposure to diethylstilbestrol (DES), especially prenatal and early in life, has been associated with prostate abnormalities, including prostatic squamous neoplasia [177].
UV-filters, compounds of sunscreens, have been reported to alter prostate gland development and estrogen target gene expression in rats. Especially 4-methylbenzylidene and 3-benzylidene-camphor are ERbeta ligands [179181].
Cadmium is a known ER ligand. In vitro work has shown proliferative action of cadmium in human prostate cells, and in rats prostatic tumors have been induced by oral cadmium exposure or by injection [177, 182, 183].
According to a review by Benbrahim and Waalkes, arsenic can induce malignant transformation of human prostate epithelial cells and also appears to impact prostate cancer cell progression by precipitating events leading to androgen independence in vitro [184].
Vinclozolin, a fungicide, has known antiandrogenic properties. On the one hand prostate gland growth in rats was reduced by vinclozolin, but on the other hand, prenatal exposure leads to aging-associated prostatitis in the next four generations of offspring. This suggests a role in prostate cancer induction [177].

4 . 1 . 2 . 2 . Epidemiological Studies
Table 3 resumes the main data from a number of epidemiological studies. Below some other data and additional details of some of these studies are mentioned.
The Agricultural Health study in Iowa and North Carolina showed that Farmers and commercial pesticide applicators have a significantly increased risk of prostate cancer (http://www.aghealth.org/).
Kumar et al. [185] studied 70 newly diagnosed prostate cancer patients and 61 age-matched healthy male controls. Significantly higher levels of betahexachlorohexane, gamma-hexachlorohexane, and p,p-DDE were found in cases as compared to controls, with increases of 3 2 % ( 𝑃 = 0 . 0 4 ) , 3 8 % ( 𝑃 = 0 . 0 0 8 ) , and 3 8 % ( 𝑃 = 0 . 0 1 ) , respectively.
Among the participants in the Agricultural Health Study in Iowa and North Carolina, different categories of use of the fumigant methyl bromide in terms of percentiles of use (<33.3, 33.4–66.7, 66.8–83.3, 83.4–91.6, >91.6), the odds ratio's (95% C.I.) amounted, compared to participants without use, to 1.01 (0.66–1.56), 0.76 (0.47–1.25), 0.70 (0.38–1.28), 2.73 (1.18–6.33), 3.47 (1.37–8.76) after correction for age and family history of prostate cancer [110]. In the same study, different categories of use of chlorinated pesticides, among applicators over 50 years of age, in terms of percentiles of use (<33.3, 33.4–66.7, 66.8–83.3, 83.4–91.6, >91.6), the odds ratio’s (95% C.I.) amounted, compared to participants with a use below percentile 33.3, to 1.29 (1.02–1.63), 1.51 (1.15–2.00), 1.37 (0.96–1.97), 1.39 (0.99–1.97), after correction for age and family history of prostate cancer [110]. Still in the same study, the thiocarbamate herbicide butylate, the organophosphorothioate insecticides chlorpyrifos and coumaphos, the organophosphorodithioate pesticide fonofos, the pyrethroid insecticide permethrin, and the organophosphorodithioate insecticide phorate showed a significantly increased risk of prostate cancer among study subjects with a family history of prostate cancer but not among those with no family history [110, 186].

tab3
Table 3: Some epidemiological studies on prostate cancer.
4.1.3. Testis Cancer

In the recent past, there have been several new epidemiological papers (reviewed by Aitken et al. [187] that point towards widespread declines in sperm quality and increases in testis cancer incidence and suggesting that these likely have an endocrine etiology. Skakkebæk et al. [188] hypothesized that the testicular dysgenesis syndrome originates from conception and can result in a cascade of defects in Sertoli and Leydig cells that ultimately affect maldescent of the testes, cryptorchidism, fertility, and the probability of testicular cancer. Jorgensen et al. [189] observed that the increasing incidence of testis cancer in Finnish birth cohorts was associated with a substantial decrease in semen quality and concluded that these simultaneous and rapidly occurring adverse trends suggested that the underlying causes are environmental and, as such, preventable.

4.1.4. Non-Hodgkin Lymphoma and Other Hematopoietic Cancers

Table 4 resumes the main data from epidemiological studies. Below some other data and additional details of some of these studies are mentioned.

tab4
Table 4: Some epidemiological studies on non-Hodgkin lymphoma.

Merhi et al. [190] performed a meta-analysis of 13 case control studies that examined the occurrence of hematopoietic cancers in pesticide-related occupations. The overall meta-odds ratio obtained after pooling 44 ORs from 13 studies was 1.3 (95% CI: 1.3–1.5). In particular, a significant increased risk of NHL was found (OR = 1.35; 95% CI = 1.2–1.5).

4.2. Diabetes

According to Harrison’s Principles of Internal Medicine (16th edition), diabetes is a metabolic disease caused by an attenuated production of insulin by pancreas B-cells (type I diabetes) or by development of resistance against insulin action resulting in a relative insulin-shortage (type II diabetes).

4.2.1. Experimental Data

According to a review by Alonso-Magdalena et al. [203], widespread EDCs, such as dioxins, pesticides and bisphenol A, cause insulin resistance and alter β-cell function in animal models. Many of them act as estrogens in insulin-sensitive tissues and in β cells, generating a pregnancy-like metabolic state characterized by insulin resistance and hyperinsulinemia.

Adult male Sprague-Dawley rats exposed to crude salmon oil, containing persistent organic pollutants (POPs), developed insulin resistance, abdominal obesity, and hepatosteatosis. The contribution of POPs to insulin resistance was confirmed in cultured adipocytes where POPs, especially organochlorine pesticides, led to robust inhibition of insulin action [204].

Parathion and other organophosphate pesticides induce a prediabetic state in Sprague-Dawley rats in a sex-selective manner [205].

Long-term exposure to the endocrine disrupting herbicide atrazine induces morphological and functional changes in mitochondria, a decrease in metabolic rate, insulin resistance and obesity in Sprague-Dawley rats [206].

The xenoestrogen Bisphenol A disrupted the action of the endocrine pancreas and blood sugar homeostasis in mice: a postprandial hyperinsulinemia and insulin resistance were induced after an injection of 100 μg/kg per day during 4 days in mice [207].

In Wistar rats, prenatal exposure to diisobutyl phthalate reduced plasma leptin and insulin in male and female fetuses [208].

Arsenic inhibits, in 3T3-L1 adipocytes in vitro, insulin signaling by inhibiting the PDK-1/PKB/Akt signal transduction pathway, which might explain its diabetogenic effects [209].

4.2.2. Epidemiological Studies

Table 5 resumes the main data from a number of epidemiological studies. Below some other data and additional details of some of these studies are mentioned.

tab5
Table 5: Some epidemiological studies on diabetes.

4 . 2 . 2 . 1 . Dioxins
As mentioned by Lee et al. [196], the U.S. Department of Veterans Affairs added type 2 diabetes to the list of presumptive diseases associated with the exposure to dioxin-containing Agent Orange in Vietnam.
Inhabitants of Seveso who were exposed to very high concentrations of dioxin during the disaster in 1976 showed significantly more diabetes than nonexposed inhabitants [191].
Longnecker and Daniels [210] identified 11 reports on the relation of TCDD with type 2 diabetes, 5 of which showed an unequivocally positive association with 3 others showing an equivocally positive association, but all these studies showed notable weaknesses.
Among 69 subjects in good health residing within 25 miles of the Vertac/Hercules Superfund site in Jacksonville, Arkansas, serum lipid concentration of TCDD ranged between 2 and 94 ppt [194]. Plasma insulin concentrations (μIU/mL) at fasting and 30, 60, and 120 minutes after a 75 g glucose load were significantly ( 𝑃 < 0 . 0 5 ) higher in persons with top decile TCDD levels (>15 ppt), respectively 7 . 0 ± 8 . 4 versus 2 . 0 ± 2 . 5 , 4 1 2 ± 7 8 0 versus 7 9 ± 1 1 3 , 3 2 5 ± 3 1 7 versus 1 0 0 ± 1 5 9 , and 2 9 4 ± 4 3 1 versus 6 5 ± 1 6 6 [194].
After adjustment for age and other covariates, serum total toxic equivalent activity (sum of PCDD/Fs and coplanar PCBs) was 62% ( 𝑃 = 0 . 0 0 0 5 ) higher in diabetic patients, than in controls [192].

4 . 2 . 2 . 2 . Other POPs (Mainly Organochlorine)
After adjustment for age and other covariates, concentration of 12 marker PCBs was 39% ( 𝑃 = 0 . 0 0 6 7 ) higher in diabetic patients than in controls [192].
In a cross-sectional study of 2,245 pregnant women, of whom 44 had diabetes (primarily type 1), the adjusted mean serum level of PCBs among the subjects with diabetes was 30% higher than in the control subjects ( 𝑃 = 0 . 0 0 0 2 ), and the relationship of PCB level to adjusted odds of diabetes was linear [193].
According to the observations of Lee et al. [197], the dioxin-like PCBs and the organochlorine pesticides showed the strongest associations with diabetes.
In a nested case-control within the Coronary Artery Risk Development in Young Adults (CARDIA) cohort, Lee et al. [197] measured 8 organochlorine pesticides, 22 polychlorinated biphenyl congeners (PCBs), and 1 polybrominated biphenyl (PBB) in serum collected in 1987-1988. Participants in this nested case-control study were diabetes free in 1987-1988. By 2005-2006, the 90 controls remained free of diabetes, whereas the 90 cases developed diabetes. POPs showed nonlinear associations with diabetes risk. The highest risk was observed in the second quartiles of trans-nonachlor, oxychlordane, mirex, highly chlorinated PCBs, and PBB153, a finding that suggests low-dose effects. Sextiles of a summary measure for all 31 pops measured were associated with following odds ratios after adjustment for wet-weight model, adjusted for age, sex, race, and BMI: sextile1 reference; 2.9 (1.0–8.8); 4.8 (1.5–14.8); 1.5 (0.4–4.8); 1.9 (0.6–4.8); 2.7 (0.8–8.8).
Lee et al. [196] reported strong and highly significant associations, among participants in the NAHNES study, between serum concentrations of persistent organic pollutants and the prevalence of diabetes, with high Odds ratio’s (Table 5) after correction for age, sex, race and ethnicity, poverty, income, BMI, and waist circumference. In nondiabetic adults participating in the same NAHNES study, successive quartiles of a parameter for sum of serum concentrations of organochlorine pesticides (Oxychlordane, Trans-nonachlor, p,p-dichlorodiphenyltrichloroethane and -Hexachlorocyclohexane) were associated with HOMA-IR insuline resistance values of 3 . 2 7 ± 0 . 3 9 , 3 . 3 6 ± 0 . 3 3 , 3 . 4 8 ± 0 . 3 5 , and 3 . 8 5 ± 0 . 4 5 ( 𝑃 t r e n d < 0 . 0 1 ) [198], after adjustment for age, sex, race, poverty income ratio, BMI, waist circumference, cigarette smoking, serum cotinine concentration, alcohol consumption, and exercise. This association increased in power in function of increasing HOMA-IR values: correlated odds-ratio for the comparison of the highest and the lowest quartile of serum concentration of organochlorine pesticides were 1.8 for an insulin resistance value equal to or higher than the 50th percentile, 4.4 for the 75th percentile and 7.5 for the 90th percentile. This means that, when comparing high and low exposed individuals, the odds-ratio for a strong abnormal insulin resistance is clearly higher than for a weakly increased insulin resistance [198].
The associations found between some PCBs and organochlorine pesticides with insulin resistance among subjects without diabetes [198] are consistent with the notion that these substances contribute to the induction of diabetes. When all five subclasses of POPs were included in one model, only OC pesticides were significantly associated with insulin resistance [198].
The rather high correlation between serum levels of different organochlorine pollutants can lead to noncausal associations between some organochlorines and diabetes, simply because these organochlorines are themselves correlated with other organochlorines, which do have a causal association with diabetes.
Interestingly, in the National Health and Nutrition Examination Survey, obesity did not increase the prevalence of diabetes among subjects with nondetectable levels of POPs, even though there were sufficient numbers of study subjects at risk in each BMI category [196].
Everett et al. [211] argue that the probability of a causal association between PCBs and diabetes is weakened by the fact that many observations fail to show a linear dose-effect relationship. The existence of nonlinear and nonmonotonic effects is, however, to be expected for receptor-binding substances (see Section 5.2).

4 . 2 . 2 . 3 . Brominated Flame Retardants
Lim et al. [199] studied levels of brominated flame retardants in relation to the prevalence of diabetes. Adjusted odds ratios across quartiles of serum concentrations for polybrominated biphenyl 153 (PBB-153) or polybrominated diphenyl ether 153 (PBDE-153) were 0.7 (0.3–1.6), 1.4 (0.7–3.0), 1.6 (0.8–3.5), and 1.9 (0.9–4.0) ( 𝑃 t r e n d < 0 . 0 1 ) and 1.6 (0.7–3.6), 2.6 (1.2–5.8), 2.7 (1.2–6.0), and 1.8 (0.8–4.0) ( 𝑃 for quadratic term <0.01), respectively. PBDE-153 thus showed an inverted U-shaped association with diabetes. Although both PBDE-99 and PBDE-100 tended to show inverted U-shaped associations similar with PBDE-153, they failed to reach statistical significance. Serum concentrations of PBB-153 were not associated with those of PBDEs, except for a weak correlation with PBDE-153. All five PBDEs were strongly and positively associated among each other [199].

4 . 2 . 2 . 4 . Phthalates
Among 221 adult Mexican women, participants with diabetes ( 𝑛 = 3 9 ) had significantly higher concentrations (geometric means ± SD) of di(2-ethylhexyl) phthalate (DEHP) metabolites ( 2 1 3 . 4 ± 2 . 1 versus 1 6 1 . 6 ± 2 . 0 ) but lower levels of monobenzyl phthalate (MBzP) a metabolite of benzylbutyl phthalate ( 3 . 8 ± 3 . 9 versus 7 . 0 ± 2 . 9 ), compared to participants without diabetes [200]. Borderline significant increased risks for diabetes were observed in relation to DEHP metabolites except MEHP in contrast to the decreased risk that resulted with MBzP concentration [200].
Stahlhut et al. [212] studied 622 (only 327 for MEHHP and MEOHP) adult US male participants in the NHANES 1999–2002 to evaluate six phthalate metabolites with prevalent exposure and known or suspected antiandrogenic activity as predictors of insulin resistance measured through the log-transformed homeostatic model assessment (HOMA, a measure of insulin resistance). Using multiple linear regression, adjusted for age, race/ethnicity, fat and total caloric consumption, physical activity level, serum cotinine, and urine creatinine, urinary concentrations of three metabolites (log transformed to normalize the data) were associated (regression coefficient (SE), 𝑃 ), with increased insulin resistance: MBP (0.064 (0.024), 𝑃 = 0 . 0 1 1 ), MBzP (0.079 (0.023), 𝑃 = 0 . 0 0 2 ), and MEP (0.056 (0.020), 𝑃 = 0 . 0 0 8 ). Converting regression coefficients to clinically interpretable measures, an increase in phthalate metabolites from the 10th to the 90th percentile corresponded to an increase in HOMA (at the 2.50 median) with 1.3-1.4 (52–57% of median) in association with three metabolites: MBP (1.3), MEP (1.3), and MBzP (1.4).

4 . 2 . 2 . 5 . Arsenic
Epidemiologic evidence points to an increased chance for the development of type 2 diabetes in populations exposed to arsenic. These associations were, however, only found at relatively high, occupational exposures, or in areas with very high drinking water concentrations of arsenic, such as parts of Bangladesh and Taiwan [210]. According to Longnecker [213], more studies are needed on the association of diabetes with arsenic. Higher cadmium, arsenic, and lead levels have also been found in diabetic mothers compared to controls [214].

4 . 2 . 2 . 6 . Tentative Conclusion
The associations between exposure to xenobiotics and diabetes in epidemiological studies are quite complex, and it is still difficult to establish a causal relation between a specific chemical and diabetes in humans, amongst others because clear dose-effect relationships are often lacking. However, taking into account the results of animal experiments, the consistency between epidemiological findings as to diabetes, insulin resistance, and the metabolic syndrome (see Section 4.4) and the mechanistic data suggesting that nonlinear and nonmonotonic exposure-effect relations are to be expected (see Section 5.2), it is likely that some organochlorines (especially some pesticides), some brominated chemicals, phthalates, and high levels of exposure to arsenic contribute to the risk of diabetes.

4.3. Obesity

Fat soluble xenobiotics can accumulate in adipose tissue, which then functions as a reservoir from which these substances can return to the blood, where they are detected in concentrations that show, for some xenobiotics-a positive correlation to the body mass index [215]. Irigaray et al. [216] observed that benzo(a)pyrene can induce obesity in mice by inhibition of beta-adrenergic stimulation of lipolysis in adipose tissue. However, negative correlations are often observed between body mass index and serum levels of organochlorine pollutants, probably due to a dilution effect. In Flemish adolescents, we found a significant negative association between internal organochlorine exposure (especially marker PCBs and hexachlorobenzene) and body mass index [217], negative association that might in part be explained by a dilution effect, but that might also, at least partly, result from an endocrine disruption effect suggesting that some organochlorines might, at least in adolescents, have a limiting effect on weight gain.

Several studies also suggest a role in obesity for the endocrine disrupting organotins tributyltin (TBT) and triphenyltin (TPT). TBT and TPT are potent agonists of the nuclear hormone receptors peroxisome proliferator-activated receptor gamma and retinoid X receptor, which serve as metabolic sensors for lipophilic hormones, dietary fatty acids and their metabolites, and consequently influence lipid biosynthesis and storage [218, 219].

Phthalates are known to act as PPAR activators, thyroid hormone axis antagonists or antiandrogens, and are suspected obesogens [219]. Several phthalate metabolites were positively and significantly correlated with abdominal obesity in a large US study [212, 220]. Hatch et al. [220] found positive associations in males (age 20–59) between urinary phthalate metabolite levels and BMI and waist circumference across quartiles of mono-benzyl (MBzP) phthalate (adjusted mean BMI = 26.7, 27.2, 28.4, 29.0, 𝑃 t r e n d = 0 . 0 0 0 2 ), and positive associations were also found for mono-2-ethyl-5-oxohexyl- (MEOHP), mono-2-ethyl-5-hydroxyhexyl- (MEHHP), mono-ethyl- (MEP), and mono-n-butyl- (MBP) phthalate. In females, BMI and WC increased with MEP quartile in adolescent girls (adjusted mean BMI = 22.9, 23.8, 24.1, 24.7, 𝑃 t r e n d = 0 . 0 3 ), and a similar but weaker pattern was seen in 20–59 year olds. In contrast, MEHP was inversely related to BMI in adolescent girls (adjusted mean BMI = 25.4, 23.8, 23.4, 22.9, 𝑃 t r e n d = 0 . 0 2 ) and females aged 20–59 (adjusted mean BMI = 29.9, 29.9, 27.9, 27.6, 𝑃 t r e n d = 0 . 0 2 ). There were no important associations among children, but several inverse associations among 60–80 year olds. Effects were thus most pronounced among adults (20–59 years) and several phthalate metabolites were sex specifically associated [220]. Interestingly, we found, in the Flemish biomonitoring, sex-specific associations between urinary phthalate metabolite concentrations and sexual maturation (unpublished results).

Polybrominated diphenyl esters (PBDE’s) are potential obesogens as well. In a rat study PBDE’s were found to lower thyroxin levels and affect lipolysis and insulin stimulated glucose oxidation in isolated adipocytes [221]. Low-dose exposure to PBDE’s during gestation and lactation has also been observed to cause long-term changes in thyroid gland morphology [218].

Dithiocarbamates (present in cosmetics and pesticides) are suggested obesogens, through interference with glucocorticoid receptor signaling [219].

Perfluorooctanoic acid (PFOA) might also act as an obesogen under certain circumstances [222].

Heindel and vom Saal [223] have also reviewed effects of perinatal exposure to several endocrine disruptive chemicals on homeostatic control systems required to maintain normal body weight troughout life. These chemicals include cadmium, organotins, and bisphenol-A.

4.4. Metabolic Syndrome

Table 6 resumes the main data from a number of epidemiological studies. Below some other data and additional details of some of these studies are mentioned.

tab6
Table 6: Some cross-sectional epidemiological studies on metabolic syndrome.

The metabolic syndrome is characterized by a high blood pressure, hyperglycemia and hypertriglyceridemia, low HDL concentrations and too much fat in the waist area.

4.4.1. Organochlorines

Lee et al. [224] found a correlation between serum concentrations of persistent organic pollutants and the prevalence of the metabolic syndrome in nondiabetic adults. Organochlorine pesticides correlated most strongly, with corrected odds ratios of 1.0, 1.5, 2.3, and 5.3 for the OC pesticide quartiles. Dioxin-like PCB’s also showed a positive correlation with ORs 1.0, 1.1, 2.2, and 2.1. Non-dioxin-like PCBs showed an inverted-U association, with odds ratio’s of 1.0, 1.3, 1.8, and 1.0 ( 𝑃 for quadratic term <0.01). OC pesticides showed ORs >2 for four of the five components of metabolic syndrome: waist circumference, elevated triacylglycerol, low HDL-cholesterol, and high fasting glucose. PCBs were linearly or quadratically associated with three of the five components: waist circumference, elevated triacylglycerol, and high fasting glucose. PCDDs and PCDFs were not associated with 4 of the 5 metabolic syndrome parameters but were positively and significantly associated with high blood pressure.

In a cross-sectional study on 1,374 subjects, not occupationally exposed to dioxins and related compounds, representative of the general population in Japan, the toxic equivalents (TEQs) of PCDDs, PCDFs, and DL-PCBs and total TEQs had significant adjusted associations with metabolic syndrome. The DL-PCB TEQs and total TEQs were associated with all components of the syndrome, and the odds ratios (ORs) in the highest quartile of DL-PCB TEQs in four of the five components were higher than those for PCDDs or PCDFs. Also congener-specific associations with metabolic syndrome were observed; in particular, the highest quartiles of PCB-126 and PCB-105 had adjusted ORs of 9.1 and 7.3, respectively [225].

4.4.2. Brominated Flame Retardants

Brominated flame retardants have also been associated with the metabolic syndrome. Prevalence was positively correlated to PBB-153 in a study of Lim et al. [199], with PBB-153 quartile odds ratios 1.0, 1.5, 3.1, 3.1, and 3.1 ( 𝑃 for trend <0.01). PBDE-153 showed an inverted U-shaped association with metabolic syndrome with odds ratios of 2.1, 2.5, 2.4, and 1.6. Nonmonotonic dose-effect relations are to be expected for some receptor-binding substances (see Section 5.2).

4.4.3. Phthalates

Stahlhut et al. [212] studied 1,292 (for MEHHP and MEOHP only 696) adult US male participants in the National Health and Nutrition Examination Survey (NHANES) 1999–2002 to evaluate six phthalate metabolites with prevalent exposure and known or suspected antiandrogenic activity as predictors of waist circumference. Using multiple linear regression, adjusted for age, race/ethnicity, fat and total caloric consumption, physical activity level, serum cotinine, and urine creatinine, urinary concentrations of four metabolites (log transformed to normalize the data) were associated (regression coefficient (SE), 𝑃 ), with increased waist circumference: MBzP (1.29 (0.34), 𝑃 = 0 . 0 0 1 ), MEHHP (1.71 (0.56), 𝑃 = 0 . 0 0 8 ), MEOHP (1.81 (0.60), 𝑃 = 0 . 0 0 9 ), and MEP (0.77 (0.29), 𝑃 = 0 . 0 1 3 ). Converting regression coefficients to clinically interpretable measures, an increase in phthalate metabolites from the 10th to the 90th percentile corresponded to an increase in waist circumference of 3.9 to 7.8 cm (4.0–8.0% of the 97.0-cm median) for four significant metabolites: MEP (3.9 cm), MBzP (5.8 cm), MEHHP (7.3 cm), and MEOHP (7.8 cm).

4.4.4. Perfluorinated Compounds

Data from NHANES and from the C8 Health Project, mentioned in a recent review on perfluorooctanoic acid [226], suggest that perfluorooctanoic acid (PFOA) contributes to higher blood lipid concentrations.

4.5. Infertility
4.5.1. In Animals

Serious problems of reproductive health in wildlife caused by pesticides were reported in the important book “Silent Spring” [227]. Later work on the reproductive and developmental anomalies in Great Lakes gulls [228] and in alligators [229] and advances in understanding of the mechanism of action of diethylstilbestrol and other xenoestrogens [230] contributed to the formulation of the endocrine disruptor hypothesis [231]. Recent studies have documented disturbing reproductive effects of ambient levels of the pesticide atrazine on frogs, characterised by feminization of males that had been exposed to concentrations that can be encountered through permitted uses in the United States [232].

There are increasing data from wildlife studies and laboratory studies with rodents, ungulates, and nonhuman primates that support a role of EDCs in the pathogenesis of several female reproductive disorders, including polycystic ovarian syndrome, aneuploidy, premature ovarian failure (POF), reproductive tract anomalies, uterine fibroids, endometriosis, and ectopic gestation [153]. In sheep and rhesus monkeys, prenatal androgenic stimulation gives rise to the polycystic ovary syndrome. In rats, exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in utero and through the end of reproductive life results in a dose-dependent onset of premature reproductive senescence, likely due to direct effects on ovarian function [233]. Perinatal exposure of rats to Bisphenol A affects the fertility of male offspring [234].

4.5.2. In Humans

4 . 5 . 2 . 1 . Changes in Sex Ratio
In a small First Nation Chippewa community surrounded by chemical manufacturing plants in Sarnia, Ontario, Canada, a marked decline in the sex ratio was observed, inferring that almost 40% of the boys had been lost [235]. In Seveso, Italy, a 2,4,5, trichlorophenol explosion in 1976 resulted in an immediate loss of males with subsequent recovery [236]. Van Larebeke et al. [237] proposed that sex ratio changes might constitute sentinel health events of endocrine disruption.

4 . 5 . 2 . 2 . Fertility of Women
Daughters of women exposed to Diethylstilboestrol showed a reduced fertility [238].
According to the endocrine society scientific statement, bisphenol A and other endocrine disrupting chemicals might contribute to the risk of polycystic ovary syndrome (PCOS) in women [153]. PCOS is a debilitating disorder in women, occurring in 6.6% of the reproductive age population; it is a leading cause of subfertility and is associated with increased lifetime risks of cardiovascular disease and type II diabetes [153].
Adult exposure in women to cigarette smoke results in decreased fecundity, decreased success rates of in vitro fertilization (IVF), decreased ovarian reserve, earlier menopause by 1–4 years, and an increased miscarriage rate [239, 240]. Maternal smoking during pregnancy appears to be a threat to the future fecundity of the daughter [241].
Higher PCB serum levels were reported to be associated with increasing menstrual cycle length and a trend towards irregular cycles [242].
Among 50 Southeast Asian immigrant women, after correction for confounding, mean luteal phase length was shorter by approximately 1.5 days at the highest quartile of serum DDT (95% CI = −2.6 to −0.30) or DDE (−2.6 to −0.20). Progesterone metabolite levels during the luteal phase were consistently decreased with higher DDE concentration [243]. Cohn et al. [244] investigated time to pregnancy (fecundability), a sensitive indicator of environmental effects on reproduction, among 289 women exposed to p,p′-DDT and p,p′-DDE in utero. Maternal p,p′-DDE was associated with a raised probability of pregnancy in their daughters, and p,p′-DDT was associated with a reduced probability of pregnancy in daughters.
Among 1240 women from the Danish National Birth Cohort recruited from 1996 to 2002, longer “time to pregnancy” (TTP) was associated with higher maternal levels of PFOA and PFOS ( 𝑃 = 0 . 0 0 1 ) [245]. Compared with women in the lowest exposure quartile, the adjusted odds of infertility (defined as TTP > 12 months) increased by 70–134% and 60–154% among women in the higher three quartiles of PFOS and PFOA, respectively. Fecundity odds ratios (FOR) were virtually identical for women in the three highest exposure groups of PFOS (FOR ( 1 / 4 ) 0.70, 0.67, and 0.74, resp.) compared with the lowest quartile. A linear-like trend was observed for PFOA (FOR 0.72, 0.73, and 0.60 for three highest quartiles versus lowest quartile) [245].
Endometriosis, occurring in 6 to 10% of women, is associated with infertility. In utero exposure of humans to diethylstilboestrol results in an increase in relative risk of endometriosis ( R R = 1 . 9 , 95% confidence interval, 1.2–2.8) [246].
Also phthalates might contribute to the risk of endometriosis. Endometriotic women showed significantly higher plasma DEHP phthalate concentrations than controls (median 0.57 micro g/mL, interquartile range: 0.06–1.23; values range: 0–3.24 versus median 0.18 micro g/mL, interquartile range: 0–0.44; values range: 0–1.03; 𝑃 = 0 . 0 0 4 7 ) [247]. In a study in India, 49 infertile women with endometriosis showed significantly higher blood concentrations of di-n-butyl phthalate (DnBP), butyl benzyl phthalate (BBP), di-n-octyl phthalate (DnOP), and diethyl hexyl phthalate (DEHP) (mean 0.44 (SD 0.41); 0.66 (SD 0.61); 3.32 (SD 2.17); 2.44 (SD 2.17) micrograms/mL) compared with 21 age-matched women with proven fertility and no evidence of endometriosis (mean 0.15 (SD 0.21); 0.11 (SD 0.22); not detected; 0.45 (SD 0.68) micrograms/mL) [248].
Flemish mothers with higher concentrations of dioxin-like substances, PCBs, or hexachlorobenzene in cord blood at delivery were more likely to have undergone treatment for infertility with odds ratio’s (95% C.I.) equal to, respectively, 1.40 (1.09–1.80, 𝑃 = 0 . 0 0 8 ) , 1.29 (1.04–1.59, 𝑃 = 0 , 0 2 ), and 1.21 (1.01–1.45, 𝑃 = 0 . 0 4 ) after correction for age and smoking (results from our Flemish biomonitoring program, see http://www.milieu-en-gezondheid.be/resultaten/2001-2006/pasgeborenen/UitgebreidResultatenrapport.pdf).

4 . 5 . 2 . 3 . Fertility of Men

(i) Maternal Smoking
Maternal smoking during pregnancy appears to be a threat to the future fecundity of the son [249, 250].

(ii) Dioxin Incidents
Men ( 𝑛 = 4 0 ) exposed to PCBs and PCDFs during the “Yu-Cheng” incident were found to have higher abnormal morphology (27.5 (9.4)% versus 23.3 (5.3)%, 𝑃 = 0 , 0 4 ) and oligospermia rate (22,5% versus 1%, 𝑃 = 0 , 0 4 ) than controls [251]. The ability of sperm to penetrate hamster oocytes (% oocytes penetrated 16,2 (14,0) versus 32,4 (21,0), 𝑃 < 0 , 0 0 1 ) and the number of sperm bound to hamster oocytes (1,6 (1,0) versus 2,7 (1,2), 𝑃 < 0 , 0 0 1 ) were significantly reduced in exposed men [251].
Men ( 𝑛 = 1 2 ) who were prenatally exposed to PCBs and PCDFs during the “Yu-Cheng” incident had a higher percentage of spermatozoids with abnormal morphology (37,5% versus 25,9%, 𝑃 < 0 , 0 0 0 1 ), less motile spermatozoids (35,1% versus 57,1%, 𝑃 = 0 , 0 0 5 8 ), and their spermatozoids were less capable of penetrating hamster oocytes ( 𝑃 = 0 , 0 1 7 ) than 23 unexposed men of similar age [252].
Exposure to dioxin during the Seveso incident led to a decreased sperm quality in men exposed prepubertally, was positively associated with sperm quality in men exposed between ages 10–17, and did not affect sperm quality in men exposed at ages 18–26 [253].

(iii) PCBs
Between groups of 34 men with poor semen quality and 31 men with normal sperm quality, Dallinga et al. [254] found no significant differences in organochlorine blood levels. However, among the men with normal semen quality, sperm count and sperm progressive motility were inversely related to the concentration of PCB metabolites [254].
Among 305 young Swedish men 18–21 years old from the general population, Richthoff et al. [255] found weak but statistically significant, negative correlations between PCB-153 levels and both the testosterone : SHBG ratio ( 𝑟 = 0 . 2 5 , 𝑃 < 0 . 0 0 1 )—a measure of the biologically active free testosterone fraction—and sperm motility ( 𝑟 = 0 . 1 3 , 𝑃 = 0 . 0 2 ).
Among 212 male partners of subfertile couples who presented to the Massachusetts General Hospital Andrology Laboratory, there were dose-response relationships among PCB-138 and sperm motility (odds ratio per tertile, adjusted for age, abstinence, and smoking, and 𝑃 value for trend were, resp., 1.00, 1.68, 2.35, 𝑃 v a l u e = 0 . 0 3 ) and morphology (1.00, 1.36, 2.53, 𝑃 v a l u e = 0 . 0 4 ). The lack of a consistent relationship among semen parameters and other individual PCB congeners and groupings of congeners may indicate a difference in spermatotoxicity between congeners [256].
Among 195 Swedish fishermen, aged 24–65 years, the subjects in the quintile with the highest PCB 153 concentration (>328 ng/g lipid) tended to have decreased sperm motility compared with the subjects in the lowest quintile (<113 ng/g lipid). The age-adjusted mean difference was 9.9% (95% confidence interval −1.0 to 2 1 % 𝑃 = 0 . 0 8 ) [257]. No significant associations between p,p′-DDE and semen characteristics or reproductive hormones were found [257].

(iv) Pesticides
Fecundity of men was also reported to be decreased in association with occupational exposure to contemporary-use nonpersistent pesticides (see Diamanti-Kandarakis et al. [153]) and even with environmental exposure to such pesticides [258, 259]. Increased odds ratio’s for poor semen quality were found (OR (95% CI) in relation to urinary concentrations per g creatinine for several pesticides: alachlor (OR for >0.7 versus <0.15 μg/g: 30.0 (4.3–210)); 2-isopropoxy-4-methyl-pyrimidinol (diazinon metabolite) (OR for >3.0 versus <0.1 μg/g: 16.7 (2.8–98.0)); atrazine (OR for 0.1 versus <0.1 μg/g: 11.3 (1.3–98.9)); 1-naphthol (carbaryl and naphthalene metabolite) (OR for >1.5 versus <1.5 μg/g: 2.7 (0.2–34.2)); 3,5,6-trichloro-2-pyridinol (chlorpyrifos metabolite) (OR for ≥0.5 versus <0.5 μg/g: 6.4 (0.5–86.3) [258]. For increasing 1-naphthol (a metabolite of both carbaryl and naphthalene) tertiles, adjusted odds ratios (ORs) were significantly elevated for below-reference sperm concentration (OR for low, medium, and high tertiles = 1.0, 4.2, 4.2, respectively; 𝑃 -value for trend = 0.01) and percent motile sperm (1.0, 2.5, 2.4; 𝑃 -value for trend = 0.01) [259]. There were suggestive, borderline-significant associations for 3,5,6-trichloro-2-pyridinol (a urinary metabolite of chlorpyrifos and chlorpyrifos-meyhyl) with sperm concentration and motility, whereas sperm morphology was weakly and nonsignificantly associated with both 3,5,6-trichloro-2-pyridinol and 1-naphthol [259].

(v) Perfluorinated Substances
Sperm quality was also reported to be diminished in association with more intensive exposure to the perfluorinated substances perfluorooctanoic acid and perfluorooctane sulfonate [260]. Among 105 Danish men from the general population (median age 19 years), men in the highest quartile of combined levels of PFOS and PFOA had a median of 6.2 million normal spermatozoa in their ejaculate in contrast to 15.5 million among men in the lowest quartile ( 𝑃 = 0 . 0 3 0 ) [260].

(vi) Heavy Metals
Sperm quality was also reported to be diminished in association with exposure to heavy metals. Among 149 healthy male industrial workers 20–43 years of age residing in Zagreb (Croatia), (98 subjects with slight to moderate occupational exposure to Pb and 51 reference subjects), a Pb-related decrease in sperm density, in counts of total, motile, and viable sperm, in the percentage and count of progressively motile sperm, in parameters of prostate secretory function, and an increase in abnormal sperm head morphology was found. These associations were confirmed by results of multiple regression, which also showed significant ( 𝑃 < 0 . 0 5 ) influence of blood cadmium, serum zinc, serum copper, smoking habits, alcohol consumption, or age on certain reproductive parameters. Blood cadmium contributed to a decrease in sperm motility and an increase in abnormal sperm morphology [261].

(vii) Trihalomethanes
Higher trihalomethane levels in drinking water might be associated with a decrease in the fecundity of men [262].

(viii) Air Pollution
Selevan et al. [263] studied semen quality of young men (18 years of age) living in Teplice, a highly industrialized district with seasonally elevated levels of air pollution, or in Prachatice, a rural district with relatively clean air. Periods of elevated air pollution in Teplice were significantly associated with decrements in several semen measures including proportionately fewer motile sperm, proportionately fewer sperm with normal morphology or normal head shape, and proportionately more sperm with abnormal chromatin [263]. In later research, 36 young men from Teplice were sampled up to seven times over 2 years allowing evaluation of semen quality after periods of exposure to both low and high air pollution. A significant association was found between exposure to periods of high air pollution (at or above the upper limit of US air quality standards) and the percentage of sperm with DNA fragmentation according to sperm chromatin structure assay (SCSA). Other semen measures were not associated with air pollution [264].

(ix) Phthalates
Among 234 young Swedish men, subjects within the highest quartile for MEP had fewer motile sperm (mean difference = 8.8%; 95% confidence interval = 0.8–17), more immotile sperms (8.9%; 0.3–18), and lower luteinizing hormone values (0.7 IU/L; 0.1–1.2), but phthalic acid was associated with improved function [265].
DEHP metabolites were measured in spot urine of 463 male partners of subfertile couples who presented for semen analysis to the Massachusetts General Hospital and of men with all semen parameters above WHO reference values. Dose-response relationships were observed for MBP with low sperm concentration (odds ratio per quartile adjusted for age, abstinence time, and smoking status = 1.00, 3.1, 2.5, 3.3; 𝑃 for trend = 0.04) and motility (1.0, 1.5, 1.5, 1.8; 𝑃 for trend = 0.04) [266].
Among 379 men from an infertility clinic, sperm DNA damage was associated with MEP and with MEHP after adjusting for DEHP oxidative metabolites, which may serve as phenotypic markers of DEHP metabolism to “less toxic” metabolites [267].
Swan et al. [268] found that mothers with higher levels of phthalates in their blood during pregnancy had a significantly greater chance of bearing male infants with reduced anogenital distance, a marker for testicular dysgenesis in rodents.

(x) Anabolic Steroids Used in Food Production
Residues of anabolic steroids and other xenobiotics used in food production may pose long-term risks for developmental processes in males. For example, in a large study of sperm concentration and fertility in American men by Swan et al. [269], there was a negative association with the number of servings of beef their mothers ate per week while pregnant. The findings of Swan et al. [268, 269] are consistent [270] with the developmental origins of human health and disease (DoHAD) hypothesis [271] and with the testicular dysgenesis syndrome identified by Skakkebaek et al. [188].

(xi) Endocrine Disruption, Reproductive, and Overall Male Health
That endocrine disruption has an important impact on the reproductive organs in men is also suggested by considerable evidence indicating that endocrine disruptors contribute to the risk of testicular cancer and prostate cancer (see above) and male urinary tract malformations (see below). Poor semen quality and increased incidence of testis cancer might find their origin in the testicular dysgenesis syndrome [187, 188].
Jensen et al. [272] found significant associations between self-rated health and semen quality and testicular size. Interestingly, good semen quality was associated with a higher life expectancy [273]. The decrease in mortality among men with good semen quality was due to a decrease in a wide range of diseases and was found among men both with and without children; therefore, the decrease in mortality could not be attributed solely to lifestyle and/or social factors. Semen quality may therefore be a fundamental biomarker of overall male health [273].

4.6. Development
4.6.1. Male Urinary Tract Malformations

Cryptorchidism and hypospadias are very frequent in Denmark [274276]. Hypospadias is associated with a slight increase in Follicle Stimulating hormone concentrations indicative of primary testicular dysfunction [275]. Recorded temporal trends, geographical differences, and observations made in wildlife after environmental accidents are compatible with a role of endocrine disrupters in the causation of male urinary tract malformations [274276]. That endocrine disruption is involved in cryptorchydism and hypospadias is also suggested by the association of cryptorchydism and hypospadias with reduced anogenital distance [277].

4.6.2. High Impact of Exposures during Early Life and Certain Time Windows

In utero and during early postnatal life mammalian organisms are much more sensitive than during adult life, not only to mutagenic agents [278], but also to endocrine disruption. Exposures during these periods can entail a high impact, not only on development but also on the risk of disease much later in life. This might be the case for cancer [279283], obesity [284286], the metabolic syndrome [286], diabetes [286], cardiovascular disease [286], neurodegenerative disease such as Alzheimer and Parkinson [287294], and mental retardation [295]. Prenatal exposures might even contribute to psychoses [296, 297]. Especially during certain time windows, when critical proliferation, differentiation, or migration processes take place, a highly increased sensitivity to disrupting agents must be taken into account, especially when these agents are receptor binding [271]. This insight led to the new paradigm on “developmental origins of human health and disease” [271].

Early life exposure (late embryonic and/or early postnatal) to low doses of PCBs [298300] or soy [301] significantly and adversely affected mating behaviors in female rats. Early postnatal treatment with coumestrol (a phytoestrogen) diminished masculine and feminine sexual behaviors [302, 303]. These results are consistent with an impact of EDCs on the neuroendocrine hypothalamus (see also Section 5.1.10).

Internal prenatal exposure to perfluorooctanoic acid (PFOA) was inversely associated with birth weight in some studies, but not in others [226].

4.6.3. Males Often More Sensitive Than Females

In mammalians, the ontogenetic evolution towards the female phenotype appears in some way to be the default process and occurs to a large extent without sex hormone influence [304]. The ontogenetic evolution towards the male phenotype on the contrary occurs under the influence of sex hormones produced by the testis (both testosterone and estradiol are necessary for normal sexual differentiation of the male brain) [304] and so probably is more vulnerable to endocrine disruption. Also, sexual differentiation of the female and male brain differs due in part to alfa-fetoprotein, which protects the brain from effects of maternal estrogens. Alfa-fetoprotein knockout mouse females are masculinised and defeminised in brain and behaviour, providing further support for a role of estrogens in the masculinisation of the brain. Additional differences in brain development between the sexes may result from even subtle differences in the timing of hormone exposures, as the mammalian brain is exquisitely sensitive to hormones in late embryonic and early postnatal time periods, and even small differences may exert large effects [304]. There has been considerable and consistent research that shows that PCBs, phytoestrogens, fungicides, pesticides, and other xenobiotics can disrupt brain sexual differentiation [304].

Even adult males and females do not necessarily react in the same way to exogenous substances. In the Flemish biomonitoring, changes in gene expression associated with internal exposure to DDE, hexachlorobenzene, marker PCBs and dioxin-like activity were predominantly in opposite direction for men and women [305].

5. Mechanistic Considerations

Endocrine-disrupting agents can act through many different mechanisms. This is best documented for agents interfering with sex hormones, especially xeno-estrogens, and most of the evidence below stems from this field.

5.1. Mechanisms Leading to Endocrine Disruption
5.1.1. Activation of the Classical Nuclear Receptors

In the classic view, estrogens control gene networks and modulate target cell activities through activation of the ERα and ERβ nuclear receptors, which bind estrogen responsive elements (EREs) in the promoters of target genes and regulate target gene expression [306].

Initially, due to the often limited effect of interaction with ERs (e.g., BPA is, in this respect, 1000–2000 fold less potent than 17β-estradiol), it was thought that the significance of xenoestrogens was low [307, 308]. However, the last decade(s), a number of other mechanisms were discovered, often triggered at low concentrations of xenoestrogen. This will be further discussed in this section.

Endocrine disruption of the thyroid system too can occur through interference with thyroid hormone receptor-dependent transactivation [126].

5.1.2. Effects of Activation of Receptors Differs in Function of the Ligand

After activation by binding to a ligand resulting in a conformation change, receptors can act as transcription factors, interacting with coactivators and corepressors and with DNA sequences [309, 310]. However, the change in conformation differs in function of the ligand [311314]. Differences in conformation can be expected to be associated with differences in function and thus differences in regulatory activity on gene expression. That is what has been observed: receptors bound to xenobiotic ligands do not have exactly the same influence on gene expression as receptors bound by endogenous ligands [315, 316]. This has been studied for several xenoestrogens, such as octylphenol, nonylphenol, endosulfan, and kepone by Wu et al. [317], who demonstrated the highly structure-dependent induction of luciferase activity in MCF-7 and MDA-MB-231 breast cancer cells transfected with a construct linked to ERα and luciferase. 17Beta-estradiol and the phytoestrogen coumestrol even had opposite effects on the regulation of estrogen receptor beta mRNA in the brain of rats [318].

5.1.3. Activation of Membrane-Bound Estrogen Receptors: mERα, mERβ, and GPR30

Until recently, most studies have focused on the slow, genomic phase of steroid responses based on activation of nuclear receptors and acting through modifications of transcription and protein synthesis. However, steroid hormones can also induce rapid (seconds to minutes) nongenomic responses based on plasma membrane receptors and acting through second messenger-triggered signal cascades [319].

In the past, the basis for calling an estrogen “weak” or “strong” has been entirely dependent upon the nuclear transcription signalling mechanism [320]. It is now becoming clear that “weak” activity via one pathway does not necessarily predict the potency of a hormone or mimetic acting via another signalling pathway. Though the activities of most environmental estrogens have been called “weak” for many years because of their inability to initiate nuclear retention and transcriptional effects, we now see that they are quite potent initiators of signal cascades emanating from the membrane [319].

Two types of membrane estrogen receptors, mERα and mERβ, are likely the same proteins as the nuclear receptors ERα and ERβ, transported to the plasma membrane by yet undetermined mechanisms [306]. As to nongenomic actions of activated mERs, one example is Ca++ release that can lead to changes in cell motility, intra- and extracellular signalling processes, and rapid hormone secretion (including prolactin) trough exocytosis. Changes in prolactin (PRL) secretion are associated with hormonal regulation of lactation, cell proliferation, the cellular immune response, and parental/maternal behaviour [321]. Xenoestrogens such as dieldrin, endosulfan, o,p′-DDE, nonylphenol, bisphenol A, coumestrol, and diethylstilbestrol are known to affect Ca++ influx and PRL release. Interestingly, Wozniak et al. [321] found these xenoestrogens to affect one or more of the above pathways in a specific way. Differences between xenoestrogens included the concentration range (pM or nM) in which they were active, as well as in the temporal pattern in which they induced a specific mechanism, for example, early- or late-phase activation or an early and sustained activation. This illustrates the complexity of xenoestrogen induced endocrine disruption.

Another, relatively recent, discovery is the seven-transmembrane estrogen receptor, GPR30, that activates alternative estrogen signalling. High binding affinities for GPR30 were demonstrated in ER-negative cells for bisphenol A, genistein, zealonone, and nonylphenol. Lower binding affinities were found for Kepone, p,p′-DDT, o,p′-DDE, and 2,2,5-trichloro-4-biphenylol (2,2,5,-PCB-4-OH). GPR30 is expressed in a broad range of tissues, such as the brain, placenta, ovaries, testes, prostate, heart, pancreas, lungs, skeletal muscle, colon, vascular epithelial, and lymphoid tissues. Thus, xenoestrogens could mimic estrogen action in all of these tissues and inappropriately activate estrogen signalling [322].

The rapid “nongenomic” mechanisms have been shown to interact with cytoplasm signal transduction molecules such as cAMP and adenylate cyclase, calcium, PI3K, PKB, Src (and consequent activation of kinases Erk1 and Erk2 in the Src/Ras/Erk-cascade) and G-proteins or directly with secondary transcription factors such as AP-1 (activator protein 1), STATS (signal transducer and activator of transcription), NFκB (nuclear factor kappa-light-chain-enhancer of activated B cells), and Sp1 (specificity protein 1) [323, 324].

5.1.4. Cytoplasmic Interactions

Besides with nuclear- and plasmamembrane-associated ER receptors, estrogens can also interact with targets within the cytosol. One of the best studied examples is the activation of Src/Ras/ERK (MAPK) pathway, in a mechanism linked to the proliferative effects of estrogens. Binding of estrogens to cytosolic ER receptors determines the interaction of ERs with Src, changing the conformation of the kinase to an active state and leading to the activation of the Src/Ras/ERK signaling cascade [325]. Another example is the modulation of nitric oxide (NO). Estrogen activates endothelial NO synthase (eNOS, the enzyme responsible for NO production). This activation in endothelial cells by ERα involves phosphatidylinositol 3-kinase (PI3K) and an ERα-eNOS signalling complex in the endothelial caveolae. Binding of estrogen to the ERα will, via a direct physical interaction with PI3K, activate serine/threonine protein kinase B (Akt), which in turn will phosphorylate and activate NOS [325].

5.1.5. Cross-Talk between Genomic and Nongenomic Pathways

As can be deduced from previous chapters, xenoestrogens can influence several mechanisms simultaneously. Therefore, Silva et al. [323] investigated the differential action of xenoestrogens, acting on both nuclear (genomic) as well as on extranuclear (non-genomic) pathways, and possible cross-talk between these two mechanisms triggered by the xenoestrogenic chemicals o,p′-DDT, p,p′-DDE, and β-HCH in MCF-7 cells. Therefore, expression of estrogen responsive genes and phosphorylation of Src, Erk1, and Erk2 were measured after exposure to these estrogenic compounds. The researchers found strong similarity between E2, o,p′-DDT, and β-HCH in gene expression and phosphorylation patterns, as well as in cell proliferation. This is despite of the lack of affinity of β-HCH for the ER binding domain. p,p′-DDE, however, influenced estrogen-related gene expression, but did not phosphorylate Src and Erk1/Erk2. Other authors have also found diversity of effects between different xenoestrogens, such as bisphenol A (unable to induce Erk activation) and endosulfan and p-nonylphenol (rapidly inducing Erk1/Erk2 phosphorylation) [326].

Li et al. [327] demonstrated that the activation or inhibition of kinases (including ERk1/Erk2, PI3K, PKC, PKA) by xenoestrogens (bisphenol-A, nonylphenol, octylphenol, endosulfan, kepone, 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane [HPTE], and 2′,3′,4′,5′-tetrachloro-4-biphenylol) depends on chemical structure. These studies have shown that estrogenic compounds can both induce rapid nongenomic and genomic responses, or both. These differences could (in part) be explained by the existence of both the classic ER binding domain, as well as an “alternative binding pocket”(inducing signaling cascades), each binding-specific (xeno)estrogens [323]. Silva et al. [323] conclude that both genomic and non-genomic effects and crosstalk should be brought into consideration when screening for environmental estrogens.

5.1.6. Activation of Estrogen-Related Receptors

Estrogen related receptors (ERR) are a subfamily of orphan nuclear receptors closely related to ERα and ERβ. Three of these ERR are known: ERRα, ERRβ, and ERRγ. ER and ERR show a considerable amount of similarity in aminoacid sequence, but E2 does not bind ERRs. However, ERR can bind to estrogen response elements, which suggests a possible overlap between ER and ERR action [328].

ERRs show spontaneous transcriptional activity, which is known to be repressed by a few chemicals. For example, DES represses the molecular activities of ERRs, however, to a considerably lesser extent than its action as an ER activator. Another inverse agonist of ERRγ is 4-hydroxytamoxifen (4-OHT). On the other hand, bisphenol-A has been observed to have a distinct antagonist action to the inverse agonist activity of 4-OHT, thus preserving ERR-activity in the presence of 4-OHT [328].

5.1.7. Cross-Talk with Estrogen Receptors after Binding on Other Receptors

Although their antiestrogenic actions are well described, dioxins can also induce endometriosis and estrogen-dependent tumours, implying possible oestrogenic effects. A heterodimer of the dioxin receptor (AhR) and Arnt, which are basic helix-loop-helix/PAS-family transcription factors, mediates most of the toxic effects of dioxins. Ohtake et al. [329] showed that the agonist-activated AhR/Arnt heterodimer directly associates with estrogen receptors ER-alpha and ER-beta. This association resulted in the recruitment of unliganded ER and the coactivator p300 to estrogen-responsive gene promoters, leading to activation of transcription and estrogenic effects. The function of liganded ER was attenuated. This mechanism is compatible with as well oestrogenic as antiestrogenic effects. Ohura et al. [330] demonstrated that AhR-induced activation of ER is dependent on ligand structure and does not necessarily occur for every AhR ligand.

5.1.8. Changes in DNA Methylation or Histone-Modifications

Epigenetic changes, such as DNA methylation and histone modifications, have been shown to be involved in the mechanisms related to endocrine disruption. Developmental exposure to estradiol and bisphenol A increased susceptibility to prostate carcinogenesis and regulated phosphodiesterase type 4 variant 4 expression epigenetically, through changes in DNA methylation [331]. Transient exposure of a gestating female rat during the period of gonadal sex determination to the endocrine disruptors vinclozolin (an antiandrogenic compound) or methoxychlor (an estrogenic compound) induced an adult phenotype in the F1 generation of decreased spermatogenic capacity (cell number and viability) and increased incidence of male infertility. These effects were transferred through the male germ line to nearly all males of all subsequent generations examined (i.e., F1 to F4). The effects on reproduction correlate with altered DNA methylation patterns in the germ line [332, 333]. Early life exposures to EDCs may alter gene expression in hypothalamic nuclei via nongenomic, epigenetic mechanisms, including DNA methylation and histone acetylation [304].

5.1.9. Genomic Instability by Interfering with the Spindle Figure

Reports show that estrogens, including E2, E3, and bisphenol A, induce micronuclei in MCF-7 cells, indicating that the (xeno) hormones have the ability to cause genomic instability [334]. Kabil et al. [335] observed that ER antagonists (interfering with the transcriptional activity of the ER and blocking promotion of ER-dependent gene expression) did not prevent micronucleus formation by these estrogens. On the other hand, coadministration of estrogens and kinase inhibitors, interfering with the extracellular signal triggered Scr/Raf/Erk signalling pathway (see Section 5.1.3), led to significantly less micronucleus formation. Kabil et al. [335] suggest that estrogens induce micronuclei formation by enhanced Scr/Raf/Erk stimulation, disturbing the localisation of Aurora B kinase to kinetochores and leading to improper chromosome segregation.

5.1.10. Interference with Hormonal Feedback Regulation and Neuroendocrine Cells

Along with the direct influence of EDCs on estrogen or androgen actions, they can affect endogenous steroid production through negative and positive feedback, effects that may differ depending on developmental stage [153]. Neuroendocrine systems function as links between the brain and peripheral endocrine systems and are responsible for the control of homeostatic processes including reproduction, growth, metabolism, energy balance, and stress response. As stated by Gore [336], disruption of neuroendocrine homeostasis by endocrine-disrupting chemicals can lead to a series of perturbations.

GnRH (Gonadotropin-releasing hormone) neurons in the hypothalamus control reproductive function in vertebrates. GnRH binds to its receptors on cells named gonadotropes, which synthesise and release luteinizing hormone (LH) and follicle stimulating hormone (FSH). These hormones then bind to receptors on ovary and testes to cause steroidogenesis and gametogenesis. Disturbance of GnRH levels can be induced by amongst others PCBs, o,p′-DDT, bisphenol A and is dependent on the chemical and on timing of treatment [336].

Evidence exists for neuroendocrine disruption of the hypothalamic-pituitary-thyroid system, with implications on (amongst others) metabolism and energy balance. For example, PCBs reduce the thyroxin and TSH (thyroid stimulating hormone) response to TRH (thyrotropin releasing hormone), which indicates hypothalamic and/or pituitary deregulation. Thyroid disruption also has consequences for neural development [336]. Disturbance of neuropsychic development in association with internal exposure to PCBs has indeed been observed in biomonitoring studies on adolescents [337] as well as on 36-month-old children, in this last instance in association with PCB levels measured in cord blood (unpublished results from the Flemish biomonitoring, Vermeir et al. in preparation).

Bisphenol A is another endocrine disruptor identified as a developmental thyroid toxicant [336]. Furthermore, the obesogenicity of DES has been supposed to involve action on the developing hypothalamic circuits, which are important for the energy balance.

Ceccarelli et al. [338] have shown in rats that exposure during early puberty to the estrogenic chemicals 17-ethinylestradiol (EE) and bisphenol-A (BPA) has a distinctive effect on ER-α-expressing neurons, in key brain areas involved in reproductive behavior. The number of ER-α containing cells and the testosterone and estradiol serum levels were modified, and the changes were both sex-dependent and different in the short and long term.

Also, exposure to hormonally active substances such as exogenous endocrine-disrupting chemicals (EDCs), may result in improper hypothalamic programming, thereby decreasing reproductive success in adulthood [304]. Furthermore, transmission of neuroendocrine effects to future generations has also been observed for vinclozolin with significant alterations in brain gene expression and behavior in F3 descendants [339].

5.1.11. Effects on the Metabolism of Hormones

Xenoestrogens have been shown to affect steroidogenic enzymes, including 3b-HSDs and 17b-HSDs (hydroxysteroid dehydrogenases), aromatase, sulphatases, and sulphotransferases. Mostly, steroidogenesis is inhibited by xenoestrogens [123].

Atrazine was observed to stimulate aromatase activity in some cell types, which leads to a higher synthesis of estradiol [340]. On the other hand, DDT and several metabolites, lindane, MEHP (phthalate metabolite), and several organotins were reported to inhibit aromatase activity in some cell types [123].

Hydroxylated metabolites of polyhalogenated aromatic hydrocarbons showed potent inhibition of estrogen sulfotransferase [341], an enzyme active in the excretion of estrogens, which elevates bioavailable estrogens in target organs.

Disruption of thyroid function occurs mainly through prereceptor regulation of ligand concentration [136, 137]. Organohalogens are among the chemicals that can induce a decrease in circulating thyroid hormone levels [137]. This is through at least three distinct mechanisms. First, the chemical can directly affect the thyroid gland to decrease the synthesis of TH [342]. Second, reduced TH levels can be caused by enhanced biliary excretion of T4 due to the induction of UDP-glucuronyltransferases [343]. Third, the chemical may displace binding of the natural ligand, T4 to TTR, which could result in deiodinase inactivation and biliary excretion of the hormone [344, 345]. Although all three mechanisms might be responsible for the decreases in circulating TH by organohalogens (parent compound and metabolites), high affinity binding of organohalogens to TTR might be the key factor in eliciting the biological effects [137].

5.1.12. Effects on Oxidative Metabolism through Activation of the Pregnane X Receptor

The expression of many genes involved in xenobiotic/drug metabolism and transport is regulated by at least three nuclear receptors or xenosensors: aryl hydrocarbon receptor (AhR), constitutive androstane receptor (CAR), and pregnane X receptor (PXR). These receptors establish crosstalk with other nuclear receptors or transcription factors controlling signalling pathways that are important to the homeostasis [346]. The pregnane X receptor (PXR) is activated by many drugs and environmental pollutants. A significant proportion (54%) of compounds with estrogenic activity or those able to bind ER were found to be hPXR activators. This was the case for classical estrogens such as estradiol and ethynylestradiol, for some antiestrogens such as 4-hydroxytamoxifen, for some mycoestrogens, for bis (2-ethylhexyl) phthalate, dibutylphthalate, and benzyl butyl phthalate, for several alkylphenols, for some UV-screens, and (but only weakly) for the fragrance galaxolide [31]. Also perfluorooctanoic acid (PFOA) was shown to activate the constitutive androstane receptor and pregnane X receptor [226]. The constitutive androstane receptor could also play a similar role but binds much less chemicals than the PXR receptor [347]. Differences in the pregnane X receptor are thought to underlie differences in xenobiotic metabolism between species [31].

The pregnane X receptor, which regulates several cytochrome P450 enzymes crucial in the oxidative metabolism of a wide range of chemicals, can thus play a role as well in the inactivation of toxic or carcinogenic chemicals as in the activation of procarcinogens and could also act as a protector of the endocrine system from chemical perturbation [31].

5.2. Low-Dose Effects and Nonlinear, Biphasic, and Nonmonotonic Dose: Effect Relationships
5.2.1. Experimental Data

For receptor binding xenohormones, it can be expected that even extremely low doses have some effect. Indeed, dose response curves for hormonal effects can be expected and often do follow Michaelis-Menten kinetics [348] implying a supralinear dose-response relationship in plots featuring linear scales for both response in ordinate and exposure in abcis.

Biological and health effects of pollutants capable of binding to receptors show complex dose-response relationships including nonmonotonic associations [54, 349352].

Furthermore, using an ordinary differential equation-based computational model, Li et al. [353] demonstrated that nonmonotonic dose-responses in gene expression can arise for exogenous ligands of steroid hormone receptors in an endogenous hormonal background.

In the case of some endocrine disruptors such as bisphenol A, exhibiting other modes of endocrine disruption in addition to binding to nuclear estrogen receptors, such as alterations in the synthesis or the metabolism of endogenous hormone and binding to plasma membrane estrogen receptors and also to androgen and thyroid hormone receptors, nontraditional dose response curves such as inverted U or U-shaped curves were observed [36]. As stated by the Chapel Hill bisphenol A expert panel [36], below the concentration range in which “pharmaceutical” effects are detected by classical toxicology, some substances, such as BPA, show biological effects due to disruption of cellular signalling mechanisms. For these substances, the safe level determined by classical toxicology does not protect against effects in the cell signal disrupting range [36].

While BPA was initially considered to be a “weak” estrogen based on a lower affinity for estrogen receptor alpha relative to estradiol [354, 355], research shows that BPA is equipotent with estradiol in its ability to activate responses via recently discovered estrogen receptors associated with the cell membrane [321, 356358]. It is through these receptors that BPA stimulates rapid physiological responses at low picogram per ml (parts per trillion) concentrations. Also, Lemmen et al. [354] found BPA to be more potent in activating embryonic ERs than would be expected on the basis of its in vitro activity.

That dose-effect relationships can be very complex for endocrine disruptors is evident from following examples: BPA has been found to have a greater effect on prostate tumor cell proliferation at 1 nanomole concentrations than it does at 100 nanomoles [359]. The plastic softener DEHP has been found to upregulate aromatase expression in neonatal male rats at doses above the LOAEL, but downregulate it at doses far below the LOAEL [360]. In an extreme example of different high-dose and low-dose effects, arsenic causes multiple organ failure at high doses, suppresses glucocorticoid hormone induction at low levels, yet enhances the same process at lower levels still [361].

5.2.2. Low-Dose Effects in Humans

For more than two decades, the hypothesis of endocrine disruption has become a contested area of science. Some scientists have argued that isolated incidents of high levels of chemical contamination have affected health and reproduction of organisms, but that generally the levels of contamination of human beings have been far too low to have had effects. In the late 1990s, the U.S. National Academy of Sciences [362] set up a committee to examine the evidence on endocrine disruptors. The Academy considered that xeno-estrogens were at least a thousand times less powerful than endogenous hormones and that the levels encountered by humans were low and so were unlikely to yield any serious effects on human health. However, several of the observations mentioned under 4.5.2. and under 4.6. indicate that environmental exposures to very low doses do indeed have effects on humans. The observations made in the Flemish biomonitoring show that very low dose internal exposures to cadmium and to organochlorine pollutants (exposures under the median level of exposure in Flemish adolescents) are associated with detectable and sometimes pronounced differences in serum sex hormone levels [363], in sexual maturation [364], in gynaecomastia in boys [364], in height and in body mass index [217]. For several parameters, the exposure-effect relation was more pronounced per unit of dose at internal exposures under the median than above the median [217, 363]. Premature thelarche has been reported in girls exposed to phthalates [365]. In the Flemish biomonitoring campaign 2007–2011, we observed that internal exposures actually occurring in adolescents aged 14-15, having no occupational exposure, to arsenic, polycyclic aromatic hydrocarbons, phthalates, organophosphorus insecticides, perfluorooctanoic acid, and the musk galaxolide, showed associations with serum hormone levels, with sexual maturation or with damage to DNA in peripheral blood cells (unpublished results, see http://www.milieu-en-gezondheid.be/resultaten/2007-2011/studiedag%2021-12-2011/abstract%20NVL.pdf).

5.3. Effects of Combined Exposures

The large number of endocrine-disrupting compounds present in the environment raises questions about the effects of simultaneous exposure to multiple compounds. However, relatively few studies have discussed combination effects.

Recently, Correia et al. [366] have tested combination effects of the (xeno)estrogens E2, EE2, and bisphenol A in fish, using vitellogenin induction as an endpoint. Effects of combined exposure to several (xeno)estrogens at equipotent concentrations were in high agreement with the predictions made with the model of concentration addition (based on the assumption that chemicals act via a similar mechanism to elicit an effect, such that one chemical acts as a dilution of the other and can be substituted at a constant proportion for the other), which points to additive action of these compounds. Zhang et al. [367] have also assessed the effect combinations of (xeno)estrogens (E2, EE2, bisphenol A and 4-tert-octylphenol) and observed that the concentration addition model agreed best with the observed combination effects, confirming additive effects of these substances on vitellogenin induction.

Other endpoints, however, show far more complex outcomes after combined exposure. Kochukov et al. [368] have previously demonstrated peaks of ERK-phosphorylation after E2, ethylphenol (EP), octylphenol (OP), propylphenol (PP), nonylphenol (NP), and bisphenol-A (BPA) exposure in pituitary cells. These peaks occurred at 2.5–5 minutes, 10–30 minutes, and 60 minutes for E1, E2, and BPA (3-peak oscillation), while for the alkylphenols and E3 a two-peak oscillation was observed with oscillations at 2.5–5 minutes and at 60 minutes (missing the intermediate peak). Later Jeng and Watson [369] studied the effects of combined exposure of these xenoestrogens with E1, E2, or E3. For cotreatment with alkylphenols, the first peak of the physiological estrogens (2.5–5 minutes) was abolished or blunted, while the second peak (10–30 minutes) was augmented. The 3rd peak, however, was mostly declined, often far below the response of the individual (xeno)estrogens. Thus, a temporal pattern with both synergistic (second peak) and antagonistic effects (3rd peak) was observed, which resulted in a transformation of the response from a three-peak oscillation to a single intermediate peak. The strength of the individual xeno-estrogen tended to be predictive for their ability to inhibit actions of the natural estrogens when combined. BPA had an even more complex response, highly dependent on the dose. At very low concentrations (10−14 M), combinations of physiological estrogens with bisphenol-A caused a response similar to alkylphenols (synergistic effect at the second peak, antagonistic effect at the third peak). However, at 10−9 M concentrations, a synergistic effect was observed at both the second and third peaks [369]. Jeng and Watson [369] also studied dose dependency of effects at the 5-minute time peak. Most alkylphenols had a higher effect on ERK activation at higher doses, except for OP which showed more activity at lower doses. In combination, alkylphenols generally enhanced the effect of physiological estrogens at lower concentration but severely disrupted them at higher concentrations. BPA alone showed a non-monotonous response, with higher effects at low (10−15 M) and high (10−7 M) concentrations, and lower effects at intermediate concentrations. Remarkably, in combination, BPA was most disruptive of the physiological estrogen at the low (10−15 M) and high (10−7 M) concentrations, while physiological estrogen effects were unaffected or enhanced at intermediate concentrations. In other words, in concentration ranges where BPA had highest estrogenic activity on its own, it also had the highest inhibitory effect on physiological estrogens when combined [369].

Zsarnovszky et al. [358] have made similar observations with BPA and E2 in cerebellar neurons, with BPA induced increases of pERK positive cells at low ( 1 0 1 0 1 0 1 2  M) and high ( 1 0 7 1 0 6  M) concentrations, but BPA did not affect basal ERK signaling at intermediate concentrations, while coadministration of E2 ( 1 0 1 0  M) and BPA ( 1 0 1 2 1 0 1 0  M) inhibited ERK activation. Thus, BPA can both mimic or block some actions of E2. This behavior could be explained by the existence of an additional high affinity BPA-binding site with inhibitory activity, which becomes available only upon ligand binding at the high-affinity site of the rapid ERK-stimulating receptor [358].

The observation that pharmaceutical (fadrozole) and environmental aromatase inhibitors (tributyltin) do not block the effect of the xenoestrogen dichlorodiphenyltrichloroethane (o,p-DDT) suggests that in the environment, exposure to seemingly antagonistic EDCs does not necessarily lessen the harmful impacts of these compounds [370].

These observations illustrate the complexity of combined exposures to multiple endocrine disrupting compounds (and physiological estrogens), as well as the risks of endocrine disruption, even at very low doses of exposure. Furthermore, it is important to remember that a lot of different parameters, such as the coexistence of multiple ER isoforms, influence of homo- and heterodimers, posttranslational modifications of the receptors, localization at the membrane, and the changeable nature of the receptor signaling complex all likely contribute to the complex properties of (xeno)estrogens [358].

6. Conclusion

There is substantial evidence indicating that endocrine disruptors contribute to the risk of cancer, developmental problems, diabetes, and possibly also obesity and the metabolic syndrome. Also, it seems highly likely that endocrine disruptors can contribute to infertility and subfertility. That is why both the Endocrine Society [153] and the American Chemical Society [371] (with 161.000 chemical scientists and engineers as members, the world's largest scientific society) recently issued scientific statements on endocrine disruption. In their statements, these scientific societies recommend increased efforts at identifying and studying endocrine disruptors, expansion of education throughout the formal education structures in universities and schools, and better information to the public in general and to health care professionals and to chemists in particular. The Endocrine Society stresses the importance of the precautionary principle in the absence of direct information regarding cause and effect and considers the principle to be critical to enhancing reproductive and endocrine health. The American Chemical Society recommends more Green Chemistry research aimed at identifying and developing functional alternatives that do not have endocrine-disrupting activity. It remains, however, very difficult to determine which substances, at which point in time and at which concentrations, actually increase risk. Implementing the physical-chemical hygiene is in this context certainly indicated.

Acronyms and Abbreviations

4-OHT:4-hydroxytamoxifen
6-OH-BDE-47:Hydroxylated metabolite of   2 , 2 , 4 , 4 -tetra-bromodiphenylether(BDE-47)
AhR:Aryl hydrocarbon receptor
AP-1:Activator protein 1 (gene regulatory protein)
AR:Androgen receptor
Arnt:Aryl hydrocarbon receptor nuclear translocator (gene regulatory protein collaborating with the Ah receptor)
BMI:Body Mass Index
BPA:Bisphenol A
cAMP:Cyclic adenosine monophosphate
CAR:Constitutive androstane receptor
CDC:United States Centre for Disease Control and Prevention
CI:Confidence Interval
DDD:(1,1-dichloro-2,2-bis(p-chloro­phenyl)ethane) (DDT metabolite)
DDE:Dichlorodiphenyldichloroethylene
DDT:1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane) (DDT metabolite)
DEHP:Bis(2-ethylhexyl) phthalate
DES:Diethylstilbestrol
E2:17beta-estradiol
E3:Estriol
EDC(s):Endocrine-disrupting compound(s)
EE2:17α-ethynylestradiol
eNOS:Endothelial NO synthase (enzyme producing nitric oxide)
EP:Ethylphenol
EPA:Environmental Protectio Agency
ER:Estrogen receptor
ERE(s):Estrogen responsive element(s)
ERK:Mitogen-activated protein kinase (signal transducing)
ERR(s):Estrogen-related receptor(s)
ERα:Estrogen receptor alfa
ERβ:Estrogen receptor beta
E-screen:Test for detecting oestrogenic activity
F1  generation: First generation after treated animals
F2,  F3,  F4:Generations following the F1generation
FSH:Follicle stimulating hormone
GC/MS:Gas  chromatography–mass spectrometry
GnRH:Gonadotropin-releasing hormone
GPR30:G-protein-coupled receptor 30
hAR:Human androgen receptor
HDL:High density lipoprotein
Hepta-BDE:Heptabrominated diphenyl ether
HOMA-IR:Homeostasis model assessment-insulin resistance (measure of insulin resistance)
HSD(s):hydroxysteroid dehydrogenase(s)
IRR:Incidence rate ratio
LH:Luteinizing hormone
MAP:Mitogen-activated protein (gene regulatory protein)
MBP:Mono-n-butyl phthalate
MBzP:Monobenzyl phthalate
MEHHP:Mono-2-ethyl-5-hydroxyhexyl phthalate
MEOHP:Mono-2-ethyl-5-oxohexyl phthalate
mRNA:Messenger Ribonucleic Acid
MVLN cells:MCF -7 human breast carcinoma cells with an estrogen receptor controlled luciferase reporter gene
NFκB:Nuclear factor kappa-light-chain-enhancer of activated B cells (gene regulatory protein)
NHANES:National Health and Nutrition Examination Survey
NIESH:National Institute of Environmental Health Sciences
NO:Nitric oxide
NOS:NO synthase (enzyme producing nitric oxide)
NP:Nonylphenol
OC pesticides:Organochlorine pesticides
OP:Octylphenol
OR(s):Odds ratio(s)
P300:Transcriptional coactivator (gene regulatory protein)
PBB-153:Polybrominated biphenyl-153
PBDE(s): Polybrominated diphenyl ether(s)
PCB 118: 2 , 3 , 4 , 4 , 5 -Pentachlorobiphenyl (a mono-ortho Polychlorinated biphenyl)
PCB(s):Polychlorinated biphenyl(s)
PCDD(s):Polychlorinated dibenzo-p-dioxin(s)
PCDF(s):Polychlorinated dibenzofuran(s)
PCOS:Polycystic ovary syndrome
pERK:Phosphorylated (activated) ERK
PFOA:Perfluorooctanoic acid
PI3K:Phosphatidylinositol 3-kinase (signal transducing enzyme)
PKA:Protein kinase A (signal transducing enzyme)
PKB:Protein kinase B (also designated AKT) (signal transducing enzyme)
PKC:Protein kinase C (signal transducing enzyme)
POF:Premature ovarian failure
POP(s):Persistent organic pollutant(s)
PP:Propylphenol
p, p -DDE: 1 , 1 -dichloro- 2 , 2 -bis(p-chlorophenyl) ethylene
p, p -DDT:1,1,1-trichloro-2,2-bis(pchlorophenyl) ethane
PRL:Prolactin (hormone)
PXR:Pregnane X receptor
RAS:Signal transducing protein, coded for by a protooncogene, belonging to the Ras superfamily of monomeric Guanosine Triphosphate Phosphatases
RR:Relative risk
SMR:Standardized mortality ratio
Sp1:Specificity protein 1 (gene regulatory protein)
Src:Signal transducing protein tyrosine kinase belonging to the Src family of kinases (coded for by a protooncogene)
Src/Ras/Erk:Important intracellular signalling pathway
STAT(s):Signal transducer(s) and activator(s) of transcription (gene regulatory protein(s))
T3:3,3,5-triiodo-L-thyronine
T4:Tetraiodo-L-thyronine
TBT:Tributyltin
TH:Thyroid hormone
TPT:Triphenyltin
TRH:Thyrotropin releasing hormone
TSH:Thyroid stimulating hormone
TTR:Transthyretin (blood transport protein for thyroxin)
UV:Ultraviolet light
WC:Waist circumference
YES:Yeast estrogen screen
β-HCH:β-hexachlorobenzene.

Conflict of Interests

The authors declare no conflict of interests.

Acknowledgments

The study was commissioned and financed and steered by the Ministry of the Flemish Community (Department of Science, Department of Public Health, and Department of Environment), without any responsibility for the scientific content. The authors would like to thank Professor Greet Schoeters and Dr. Elly Den Hond for constructive comments.

References

  1. P. Curado, B. Edwards, H. R. Shin et al., Cancer Incidence in Five Continents, vol. 9, IARC Scientific Publication, Lyon, France, 2007.
  2. R. Boulogne, E. Jougla, et al., “Mortality differences between the foreign-born and locally-born population in France (2004–2007),” vol. 74, no. 8, pp. 1213–1223, 2012.
  3. K. Nasseri and L. H. Moulton, “Patterns of death in the first and second generation immigrants from selected Middle Eastern countries in California,” Journal of Immigrant and Minority Health/Center for Minority Public Health, vol. 13, no. 2, pp. 361–370, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. I. Stirbu, A. E. Kunst, F. A. Vlems et al., “Cancer mortality rates among first and second generation migrants in the Netherlands: convergence toward the rates of the native Dutch population,” International Journal of Cancer, vol. 119, no. 11, pp. 2665–2672, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Yavari, T. G. Hislop, C. Bajdik et al., “Comparison of cancer incidence in Iran and Iranian immigrants to British Columbia, Canada,” Asian Pacific Journal of Cancer Prevention, vol. 7, no. 1, pp. 86–90, 2006. View at Scopus
  6. E. M. John, A. I. Phipps, A. Davis, and J. Koo, “Migration history, acculturation, and breast cancer risk in Hispanic women,” Cancer Epidemiology Biomarkers and Prevention, vol. 14, no. 12, pp. 2905–2913, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Maskarinec and J. J. Noh, “The effect of migration on cancer incidence among Japanese in Hawaii,” Ethnicity and Disease, vol. 14, no. 3, pp. 431–439, 2004. View at Scopus
  8. R. Fernandez, C. Miranda, and B. Everett, “Prevalence of obesity among migrant Asian Indians: a systematic review and meta-analysis,” International Journal of Evidence-Based Healthcare, vol. 9, no. 4, pp. 420–428, 2011. View at Publisher · View at Google Scholar
  9. S. Ebrahim, S. Kinra, L. Bowen et al., “The effect of rural-to-urban migration on obesity and diabetes in india: a cross-sectional study,” PLoS Medicine, vol. 7, no. 4, Article ID e1000268, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. Cancer Research UK, 2011, http://info.cancerresearchuk.org/cancerstats/.
  11. F. Bray, J. Lortet-Tieulent, J. Ferlay, D. Forman, and A. Auvinen, “Prostate cancer incidence and mortality trends in 37 European countries: an overview,” European Journal of Cancer, vol. 46, no. 17, pp. 3040–3052, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. M. D. Althuis, J. M. Dozier, W. F. Anderson, S. S. Devesa, and L. A. Brinton, “Global trends in breast cancer incidence and mortality 1973–1997,” International Journal of Epidemiology, vol. 34, no. 2, pp. 405–412, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Huyghe, T. Matsuda, and P. Thonneau, “Increasing incidence of testicular cancer worldwide: a review,” Journal of Urology, vol. 170, no. 1, pp. 5–11, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. J. D. M. Otten, M. J. M. Broeders, J. Fracheboud, S. J. Otto, H. J. De Koning, and A. L. M. Verbeek, “Impressive time-related influence of the Dutch screening programme on breast cancer incidence and mortality, 1975–2006,” International Journal of Cancer, vol. 123, no. 8, pp. 1929–1934, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. E. M. Ward, M. J. Thun, L. M. Hannan, and A. Jemal, “Interpreting cancer trends,” Annals of the New York Academy of Sciences, vol. 1076, pp. 29–53, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. CDC, 2008, http://www.cdc.gov/diabetes/statistics/prevalence_national.htm.
  17. CDC, 2008, http://www.cdc.gov/nchs/data/hestat/overweight/overweight_adult.htm.
  18. E. S. Ford, W. H. Giles, and A. H. Mokdad, “Increasing prevalence of the metabolic syndrome among U.S. adults,” Diabetes Care, vol. 27, no. 10, pp. 2444–2449, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. G. E. Duncan, S. M. Li, and X. H. Zhou, “Prevalence and trends of a metabolic syndrome phenotype among U.S. adolescents, 1999–2000,” Diabetes Care, vol. 27, no. 10, pp. 2438–2443, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Yu, Q. Zhou, Y. Hang, X. Bu, and W. Jia, “Antiestrogenic effect of 20S-protopanaxadiol and its synergy with tamoxifen on breast cancer cells,” Cancer, vol. 109, no. 11, pp. 2374–2382, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Le Guevel and F. Pakdel, “Assessment of oestrogenic potency of chemicals used as growth promoter by in-vitro methods,” Human Reproduction, vol. 16, no. 5, pp. 1030–1036, 2001. View at Scopus
  22. G. G. J. M. Kuiper, J. G. Lemmen, B. Carlsson et al., “Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β,” Endocrinology, vol. 139, no. 10, pp. 4252–4263, 1998. View at Scopus
  23. K. Ikeda, Y. Arao, H. Otsuka et al., “Terpenoids found in the Umbelliferae family act as agonists/antagonists for ERα and ERβ: differential transcription activity between ferutinine-liganded ERα and ERβ,” Biochemical and Biophysical Research Communications, vol. 291, no. 2, pp. 354–360, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. V. Beck, U. Rohr, and A. Jungbauer, “Phytoestrogens derived from red clover: an alternative to estrogen replacement therapy?” Journal of Steroid Biochemistry and Molecular Biology, vol. 94, no. 5, pp. 499–518, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Viglietti-Panzica, E. Mura, and G. Panzica, “Effects of early embryonic exposure to genistein on male copulatory behavior and vasotocin system of Japanese quail,” Hormones and Behavior, vol. 51, no. 3, pp. 355–363, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. W. Hu, H. Liu, et al., “Endocrine effects of methoxylated brominated diphenyl ethers in three in vitro models,” Marine Pollution Bulletin, vol. 62, no. 11, pp. 2356–2361, 2011. View at Publisher · View at Google Scholar
  27. S. L. Schneider, V. Alks, and C. E. Morreal, “Estrogen properties of 3,9 dihydroxybenz[a]anthracene, a potential metabolite of benz[a]anthracene,” Journal of the National Cancer Institute, vol. 57, no. 6, pp. 1351–1354, 1976. View at Scopus
  28. M. Abdelrahim, E. Ariazi, K. Kim et al., “3-Methylcholanthrene and other aryl hydrocarbon receptor agonists directly activate estrogen receptor α,” Cancer Research, vol. 66, no. 4, pp. 2459–2467, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Chaloupka, V. Krishnan, and S. Safe, “Polynuclear aromatic hydrocarbon carcinogens as antiestrogens m MCF-7 human breast cancer cells: role of the Ah receptor,” Carcinogenesis, vol. 13, no. 12, pp. 2233–2239, 1992. View at Scopus
  30. R. White, S. Jobling, S. A. Hoare, J. P. Sumpter, and M. G. Parker, “Environmentally persistent alkylphenolic compounds are estrogenic,” Endocrinology, vol. 135, no. 1, pp. 175–182, 1994. View at Publisher · View at Google Scholar · View at Scopus
  31. W. Mnif, J. M. Pascussi, A. Pillon et al., “Estrogens and antiestrogens activate hPXR,” Toxicology Letters, vol. 170, no. 1, pp. 19–29, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Pillon, A. M. Boussioux, A. Escande et al., “Binding of estrogenic compounds to recombinant estrogen receptor-α: application to environmental analysis,” Environmental Health Perspectives, vol. 113, no. 3, pp. 278–284, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Pasqualini, A. Sarrieau, M. Dussaillant et al., “Estrogen-like effects of 7,12-dimethylbenz(a)anthracene on the female rat hypothalamo-pituitary axis,” Journal of Steroid Biochemistry, vol. 36, no. 5, pp. 485–491, 1990. View at Publisher · View at Google Scholar · View at Scopus
  34. C. A. Harris, E. J. Routledge, C. Schaffner, J. V. Brian, W. Giger, and J. P. Sumpter, “Benzotriazole is antiestrogenic in vitro but not in vivo,” Environmental Toxicology and Chemistry, vol. 26, no. 11, pp. 2367–2372, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Jobling, T. Reynolds, R. White, M. G. Parker, and J. P. Sumpter, “A variety of environmentally persistent chemicals, including some phthalate plasticizers, are weakly estrogenic,” Environmental Health Perspectives, vol. 103, no. 6, pp. 582–587, 1995. View at Scopus
  36. F. S. Vom Saal, B. T. Akingbemi, S. M. Belcher et al., “Chapel Hill bisphenol A expert panel consensus statement: integration of mechanisms, effects in animals and potential to impact human health at current levels of exposure,” Reproductive Toxicology, vol. 24, no. 2, pp. 131–138, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. F. S. Vom Saal, S. C. Nagel, et al., “The estrogenic endocrine disrupting chemical bisphenol A, (BPA) and obesity,” Molecular and Cellular Endocrinology, vol. 354, no. 1-2, pp. 74–84, 2012. View at Publisher · View at Google Scholar
  38. S. M. Oh, H. R. Kim, and K. H. Chung, “In vitro estrogenic and antiestrogenic potential of chlorostyrenes,” Toxicology in Vitro, vol. 23, no. 7, pp. 1242–1248, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. K. Yamasaki, M. Takeyoshi, M. Sawaki, N. Imatanaka, K. Shinoda, and M. Takatsuki, “Immature rat uterotrophic assay of 18 chemicals and Hershberger assay of 30 chemicals,” Toxicology, vol. 183, no. 1–3, pp. 93–115, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. T. G. Preuss, H. Gurer-Orhan, J. Meerman, and H. T. Ratte, “Some nonylphenol isomers show antiestrogenic potency in the MVLN cell assay,” Toxicology in Vitro, vol. 24, no. 1, pp. 129–134, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. Lai, M. Lu, et al., “Glucuronidation of hydroxylated polybrominated diphenyl ethers and their modulation of estrogen UDP-glucuronosyltransferases,” Chemosphere, vol. 86, no. 7, pp. 727–734, 2012. View at Publisher · View at Google Scholar
  42. H. Liu, W. Hu, H. Sun et al., “In vitro profiling of endocrine disrupting potency of 2,2′,4,4′-tetrabromodiphenyl ether (BDE47) and related hydroxylated analogs (HO-PBDEs),” Marine Pollution Bulletin, vol. 63, no. 5–12, pp. 287–296, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. I. A. T. M. Meerts, R. J. Letcher, S. Hoving et al., “In vitro estrogenicity of polybrominated diphenyl ethers, hydroxylated PBDEs, and polybrominated bisphenol A compounds,” Environmental Health Perspectives, vol. 109, no. 4, pp. 399–407, 2001. View at Scopus
  44. T. Hamers, J. H. Kamstra, E. Sonneveld et al., “In vitro profiling of the endocrine-disrupting potency of brominated flame retardants,” Toxicological Sciences, vol. 92, no. 1, pp. 157–173, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. D. Crews, J. M. Bergeron, and J. A. McLachlan, “The role of estrogen in turtle sex determination and the effect of PCBs,” Environmental Health Perspectives, vol. 103, no. 7, pp. 73–77, 1995. View at Scopus
  46. L. J. Fischer, R. F. Seegal, P. E. Ganey, I. N. Pessah, and P. R. S. Kodavanti, “Symposium overview: toxicity of non-coplanar PCBs,” Toxicological Sciences, vol. 41, no. 1, pp. 49–61, 1998. View at Publisher · View at Google Scholar · View at Scopus
  47. G. Winneke, J. Walkowiak, and H. Lilienthal, “PCB-induced neurodevelopmental toxicity in human infants and its potential mediation by endocrine dysfunction,” Toxicology, vol. 181-182, pp. 161–165, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. A. H. Buckman, N. Veldhoen, et al., “PCB-associated changes in mRNA expression in killer whales (Orcinus orca) from the NE Pacific Ocean,” Environmental Science & Technology, vol. 45, no. 23, pp. 10194–10202, 2011.
  49. S. Takeuchi, F. Shiraishi, et al., “Characterization of steroid hormone receptor activities in 100 hydroxylated polychlorinated biphenyls, including congeners identified in humans,” Toxicology, vol. 289, no. 2-3, pp. 112–121, 2011. View at Publisher · View at Google Scholar
  50. R. Recio-Vega, V. Velazco-Rodriguez, G. Ocampo-Gómez, S. Hernandez-Gonzalez, P. Ruiz-Flores, and F. Lopez-Marquez, “Serum levels of polychlorinated biphenyls in Mexican women and breast cancer risk,” Journal of Applied Toxicology, vol. 31, no. 3, pp. 270–278, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. K. Svobodová, M. Plačková, V. Novotná, and T. Cajthaml, “Estrogenic and androgenic activity of PCBs, their chlorinated metabolites and other endocrine disruptors estimated with two in vitro yeast assays,” Science of the Total Environment, vol. 407, no. 22, pp. 5921–5925, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. S. M. Oh, B. T. Ryu, S. K. Lee, and K. H. Chung, “Antiestrogenic potentials of ortho-PCB congeners by single or complex exposure,” Archives of Pharmacal Research, vol. 30, no. 2, pp. 199–209, 2007. View at Scopus
  53. B. C. Sanchez, B. Carter, H. R. Hammers, and M. S. Sepúlveda, “Transcriptional response of hepatic largemouth bass (Micropterus salmoides) mRNA upon exposure to environmental contaminants,” Journal of Applied Toxicology, vol. 31, no. 2, pp. 108–116, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. E. C. Bonefeld-Jorgensen, H. R. Andersen, T. H. Rasmussen, and A. M. Vinggaard, “Effect of highly bioaccumulated polychlorinated biphenyl congeners on estrogen and androgen receptor activity,” Toxicology, vol. 158, no. 3, pp. 141–153, 2001. View at Publisher · View at Google Scholar · View at Scopus
  55. P. Y. Kunz and K. Fent, “Multiple hormonal activities of UV filters and comparison of in vivo and in vitro estrogenic activity of ethyl-4-aminobenzoate in fish,” Aquatic Toxicology, vol. 79, no. 4, pp. 305–324, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. E. Gomez, A. Pillon, H. Fenet et al., “Estrogenic activity of cosmetic components in reporter cell lines: Parabens, UV screens, and musks,” Journal of Toxicology and Environmental Health A, vol. 68, no. 4, pp. 239–251, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. T. Suzuki, S. Kitamura, R. Khota, K. Sugihara, N. Fujimoto, and S. Ohta, “Estrogenic and antiandrogenic activities of 17 benzophenone derivatives used as UV stabilizers and sunscreens,” Toxicology and Applied Pharmacology, vol. 203, no. 1, pp. 9–17, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. S. Zucchi, N. Blüthgen, A. Ieronimo, and K. Fent, “The UV-absorber benzophenone-4 alters transcripts of genes involved in hormonal pathways in zebrafish (Danio rerio) eleuthero-embryos and adult males,” Toxicology and Applied Pharmacology, vol. 250, no. 2, pp. 137–146, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Schlumpf, B. Cotton, M. Conscience, V. Haller, B. Steinmann, and W. Lichtensteiger, “In vitro and in vivo estrogenicity of UV screens,” Environmental Health Perspectives, vol. 109, no. 3, pp. 239–244, 2001. View at Scopus
  60. B. van Der Burg, R. Schreurs, S. van der Linden, W. Seinen, A. Brouwer, and E. Sonneveld, “Endocrine effects of polycyclic musks: do we smell a rat?” International Journal of Andrology, vol. 31, no. 2, pp. 188–193, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. G. Lemaire, W. Mnif, P. Mauvais, P. Balaguer, and R. Rahmani, “Activation of α- and β-estrogen receptors by persistent pesticides in reporter cell lines,” Life Sciences, vol. 79, no. 12, pp. 1160–1169, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. G. Du, O. Shen, H. Sun et al., “Assessing hormone receptor activities of pyrethroid insecticides and their metabolites in reporter gene assays,” Toxicological Sciences, vol. 116, no. 1, pp. 58–66, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. H. Kojima, E. Katsura, S. Takeuchi, K. Niiyama, and K. Kobayashi, “Screening for estrogen and androgen receptor activities in 200 pesticides by in vitro reporter gene assays using Chinese hamster ovary cells,” Environmental Health Perspectives, vol. 112, no. 5, pp. 524–531, 2004. View at Scopus
  64. G. Lemaire, B. Terouanne, P. Mauvais, S. Michel, and R. Rahmani, “Effect of organochlorine pesticides on human androgen receptor activation in vitro,” Toxicology and Applied Pharmacology, vol. 196, no. 2, pp. 235–246, 2004. View at Publisher · View at Google Scholar · View at Scopus
  65. W. Q. Fan, T. Yanase, H. Morinaga et al., “Atrazine-induced aromatase expression is SF-1 dependent: implications for endocrine disruption in wildlife and reproductive cancers in humans,” Environmental Health Perspectives, vol. 115, no. 5, pp. 720–727, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. F. Orton, E. Rosivatz, M. Scholze, and A. Kortenkamp, “Widely used pesticides with previously unknown endocrine activity revealed as in Vitro antiandrogens,” Environmental Health Perspectives, vol. 119, no. 6, pp. 794–800, 2011. View at Publisher · View at Google Scholar · View at Scopus
  67. H. R. Andersen, A. M. Vinggaard, T. H. Rasmussen, I. M. Gjermandsen, and E. Cecilie Bonefeld-Jørgensen, “Effects of currently used pesticides in assays for estrogenicity, androgenicity, and aromatase activity in vitro,” Toxicology and Applied Pharmacology, vol. 179, no. 1, pp. 1–12, 2002. View at Publisher · View at Google Scholar · View at Scopus
  68. H. T. Grünfeld and E. C. Bonefeld-Jorgensen, “Effect of in vitro estrogenic pesticides on human oestrogen receptor α and β mRNA levels,” Toxicology Letters, vol. 151, no. 3, pp. 467–480, 2004. View at Publisher · View at Google Scholar · View at Scopus
  69. S. S. Kim, R. D. Lee, et al., “Potential estrogenic and antiandrogenic effects of permethrin in rats,” Journal of Reproduction and Development, vol. 51, no. 2, pp. 201–210, 2005. View at Publisher · View at Google Scholar
  70. H. R. Andersen, E. C. Bonefeld-Jørgensen, F. Nielsen, K. Jarfeldt, M. N. Jayatissa, and A. M. Vinggaard, “Estrogenic effects in vitro and in vivo of the fungicide fenarimol,” Toxicology Letters, vol. 163, no. 2, pp. 142–152, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. S. Kitamura, T. Suzuki, S. Ohta, and N. Fujimoto, “Antiandrogenic activity and metabolism of the organophosphorus pesticide fenthion and related compounds,” Environmental Health Perspectives, vol. 111, no. 4, pp. 503–508, 2003. View at Scopus
  72. E. C. Bonefeld-Jorgensen, H. T. Grünfeld, and I. M. Gjermandsen, “Effect of pesticides on estrogen receptor transactivation in vitro: a comparison of stable transfected MVLN and transient transfected MCF-7 cells,” Molecular and Cellular Endocrinology, vol. 244, no. 1-2, pp. 20–30, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. M. B. Kjærstad, C. Taxvig, C. Nellemann, A. M. Vinggaard, and H. R. Andersen, “Endocrine disrupting effects in vitro of conazole antifungals used as pesticides and pharmaceuticals,” Reproductive Toxicology, vol. 30, no. 4, pp. 573–582, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. S.S. Kim, S.J. Kwackac, R. Da Leea, et al., “Assessment of estrogenic and androgenic activities of tetramethrin in vitro and in vivo assays,” Journal of Toxicology and Environmental Health A, vol. 68, no. 23-24, pp. 2277–2289, 2005. View at Publisher · View at Google Scholar · View at Scopus
  75. F. H. Comhaire, A. M. A. Mahmoud, and F. Schoonjans, “Sperm quality, birth rates and the environment in Flanders (Belgium),” Reproductive Toxicology, vol. 23, no. 2, pp. 133–137, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. K. Bay, C. Asklund, N. E. Skakkebaek, and A. M. Andersson, “Testicular dysgenesis syndrome: possible role of endocrine disrupters,” Best Practice and Research, vol. 20, no. 1, pp. 77–90, 2006. View at Publisher · View at Google Scholar · View at Scopus
  77. J. Auger, J. M. Kunstmann, F. Czyglik, and P. Jouannet, “Decline in semen quality among fertile men in Paris during the past 20 years,” The New England Journal of Medicine, vol. 332, no. 5, pp. 281–285, 1995. View at Publisher · View at Google Scholar · View at Scopus
  78. S. Irvine, E. Cawood, D. Richardson, E. MacDonald, and J. Aitken, “Evidence of deteriorating semen quality in the United Kingdom: birth cohort study in 577 men in Scotland over 11 years,” British Medical Journal, vol. 312, no. 7029, pp. 467–471, 1996. View at Scopus
  79. S. H. Swan, E. P. Elkin, and L. Fenster, “The question of declining sperm density revisited: an analysis of 101 studies published 1934–1996,” Environmental Health Perspectives, vol. 108, no. 10, pp. 961–966, 2000. View at Scopus
  80. T. K. Jensen, E. Carlsen, N. Jørgensen et al., “Poor semen quality may contribute to recent decline in fertility rates,” Human Reproduction, vol. 17, no. 6, pp. 1437–1440, 2002. View at Scopus
  81. T. G. Travison, A. B. Araujo, A. B. O'Donnell, V. Kupelian, and J. B. McKinlay, “A population-level decline in serum testosterone levels in American men,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 1, pp. 196–202, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. T. H. Scheike, L. Rylander, L. Carstensen et al., “Time trends in human fecundability in Sweden,” Epidemiology, vol. 19, no. 2, pp. 191–196, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. I. J. Bakken and F. E. Skjeldestad, “Time trends in ectopic pregnancies in a Norwegian county 1970–2004—a population-based study,” Human Reproduction, vol. 21, no. 12, pp. 3132–3136, 2006. View at Publisher · View at Google Scholar · View at Scopus
  84. M. Joffe, “Time trends in biological fertility in Britain,” The Lancet, vol. 355, no. 9219, pp. 1961–1965, 2000. View at Scopus
  85. M. Sallmén, C. R. Weinberg, D. D. Baird, M. L. Lindbohm, and A. J. Wilcox, “Has human fertility declined over time? Why we may never know,” Epidemiology, vol. 16, no. 4, pp. 494–499, 2005. View at Publisher · View at Google Scholar · View at Scopus
  86. D. L. Davis, P. Webster, H. Stainthorpe, J. Chilton, L. Jones, and R. Doi, “Declines in sex ratio at birth and fetal deaths in Japan, and in U.S. whites but not African Americans,” Environmental Health Perspectives, vol. 115, no. 6, pp. 941–946, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. A. C. Pesatori, D. Consonni, M. Rubagotti, P. Grillo, and P. A. Bertazzi, “Cancer incidence in the population exposed to dioxin after the “seveso accident“: twenty years of follow-up,” Environmental Health, vol. 8, no. 1, article 39, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. P. K. Mills and R. Yang, “Regression analysis of pesticide use and breast cancer incidence in California Latinas,” Journal of Environmental Health, vol. 68, no. 6, pp. 15–44, 2006. View at Scopus
  89. L. López-Carrillo, R. U. Hernández-Ramírez, A. M. Calafat et al., “Exposure to phthalates and breast cancer risk in Northern Mexico,” Environmental Health Perspectives, vol. 118, no. 4, pp. 539–544, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. J. M. Ibarluzea, M. F. Fernández, L. Santa-Marina et al., “Breast cancer risk and the combined effect of environmental estrogens,” Cancer Causes and Control, vol. 15, no. 6, pp. 591–600, 2004. View at Publisher · View at Google Scholar · View at Scopus
  91. J. F. Viel, M. C. Clément, M. Hägi, S. Grandjean, B. Challier, and A. Danzon, “Dioxin emissions from a municipal solid waste incinerator and risk of invasive breast cancer: a population-based case-control study with GIS-derived exposure,” International Journal of Health Geographics, vol. 7, article 4, 2008. View at Publisher · View at Google Scholar · View at Scopus
  92. J. A. McElroy, M. M. Shafer, A. Trentham-Dietz, J. M. Hampton, and P. A. Newcomb, “Cadmium exposure and breast cancer risk,” Journal of the National Cancer Institute, vol. 98, no. 12, pp. 869–873, 2006. View at Publisher · View at Google Scholar · View at Scopus
  93. J. Nie, J. Beyea, M. R. Bonner et al., “Exposure to traffic emissions throughout life and risk of breast cancer: the Western New York Exposures and Breast Cancer (WEB) study,” Cancer Causes and Control, vol. 18, no. 9, pp. 947–955, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. S. Villeneuve, D. Cyr, E. Lynge et al., “Occupation and occupational exposure to endocrine disrupting chemicals in male breast cancer: a case-control study in Europe,” Occupational and Environmental Medicine, vol. 67, no. 12, pp. 837–844, 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. A. P. Høyer, P. Grandjean, T. Jørgensen, J. W. Brock, and H. B. Hartvig, “Organochlorine exposure and risk of breast cancer,” The Lancet, vol. 352, no. 9143, pp. 1816–1820, 1998. View at Scopus
  96. T. I. Sung, P. C. Chen, L. Jyuhn-Hsiarn Lee, Y. P. Lin, G. Y. Hsieh, and J. D. Wang, “Increased standardized incidence ratio of breast cancer in female electronics workers,” BMC Public Health, vol. 7, article 102, 2007. View at Publisher · View at Google Scholar · View at Scopus
  97. C. P. Rennix, M. M. Quinn, P. J. Amoroso, E. A. Eisen, and D. H. Wegman, “Risk of breast cancer among enlisted Army women occupationally exposed to volatile organic compounds,” American Journal of Industrial Medicine, vol. 48, no. 3, pp. 157–167, 2005. View at Publisher · View at Google Scholar · View at Scopus
  98. B. A. Cohn, M. S. Wolff, P. M. Cirillo, and R. I. Scholtz, “DDT and breast cancer in young women: new data on the significance of age at exposure,” Environmental Health Perspectives, vol. 115, no. 10, pp. 1406–1414, 2007. View at Publisher · View at Google Scholar · View at Scopus
  99. G. H. Degen and H. M. Bolt, “Endocrine disruptors: update on xenoestrogens,” International Archives of Occupational and Environmental Health, vol. 73, no. 7, pp. 433–441, 2000. View at Publisher · View at Google Scholar · View at Scopus
  100. J. Santodonato, “Review of the estrogenic and antiestrogenic activity of polycyclic aromatic hydrocarbons: relationship to carcinogenicity,” Chemosphere, vol. 34, no. 4, pp. 835–848, 1997. View at Publisher · View at Google Scholar · View at Scopus
  101. P. Fechner, P. Damdimopoulou, and G. Gauglitz, “Biosensors paving the way to understanding the interaction between cadmium and the estrogen receptor alpha,” PLoS ONE, vol. 6, no. 8, Article ID e23048, 2011. View at Publisher · View at Google Scholar · View at Scopus
  102. A. Kortenkamp, “Are cadmium and other heavy metal compounds acting as endocrine disrupters?” Metal Ions in Life Sciences, vol. 8, pp. 305–317, 2011. View at Scopus
  103. M. P. Jain, F. Vaisheva, and D. Maysinger, “Metalloestrogenic effects of quantum dots,” Nanomedicine, vol. 7, no. 1, pp. 23–37, 2012. View at Publisher · View at Google Scholar
  104. K. Takeda, N. Tsukue, and S. Yoshida, “Endocrine-disrupting activity of chemicals in diesel exhaust and diesel exhaust particles,” Environmental Science & Technology, vol. 11, no. 1, pp. 33–45, 2004. View at Scopus
  105. D. R. Lewis, J. W. Southwick, R. Ouellet-Hellstrom, J. Rench, and R. L. Calderon, “Drinking water arsenic in Utah: a cohort mortality study,” Environmental Health Perspectives, vol. 107, no. 5, pp. 359–365, 1999. View at Scopus
  106. C. J. Chen and C. J. Wang, “Ecological correlation between arsenic level in well water and age-adjusted mortality from malignant neoplasms,” Cancer Research, vol. 50, no. 17, pp. 5470–5474, 1990. View at Scopus
  107. L. Hardell, S. O. Andersson, M. Carlberg et al., “Adipose tissue concentrations of persistent organic pollutants and the risk of prostate cancer,” Journal of Occupational and Environmental Medicine, vol. 48, no. 7, pp. 700–707, 2006. View at Publisher · View at Google Scholar · View at Scopus
  108. M. M. Prince, A. M. Ruder, M. J. Hein et al., “Mortality and exposure response among 14,458 electrical capacitor manufacturing workers exposed to polychlorinated biphenyls (PCBs),” Environmental Health Perspectives, vol. 114, no. 10, pp. 1508–1514, 2006. View at Publisher · View at Google Scholar · View at Scopus
  109. X. Xu, A. B. Dailey, E. O. Talbott, V. A. Ilacqua, G. Kearney, and N. R. Asal, “Associations of serum concentrations of organochlorine pesticides with breast cancer and prostate cancer in U.S. adults,” Environmental Health Perspectives, vol. 118, no. 1, pp. 60–66, 2010. View at Publisher · View at Google Scholar · View at Scopus
  110. M. C. R. Alavanja, C. Samanic, M. Dosemeci et al., “Use of agricultural pesticides and prostate cancer risk in the agricultural health study cohort,” American Journal of Epidemiology, vol. 157, no. 9, pp. 800–814, 2003. View at Publisher · View at Google Scholar · View at Scopus
  111. G. Van Maele-Fabry and J. L. Willems, “Prostate cancer among pesticide applicators: a meta-analysis,” International Archives of Occupational and Environmental Health, vol. 77, no. 8, pp. 559–570, 2004. View at Publisher · View at Google Scholar · View at Scopus
  112. G. Van Maele-Fabry, V. Libotte, J. Willems, and D. Lison, “Review and meta-analysis of risk estimates for prostate cancer in pesticide manufacturing workers,” Cancer Causes and Control, vol. 17, no. 4, pp. 353–373, 2006. View at Publisher · View at Google Scholar · View at Scopus
  113. Q. Y. Wu, H. Y. Hu, X. Zhao, Y. Li, and Y. Liu, “Characterization and identification of antiestrogenic products of phenylalanine chlorination,” Water Research, vol. 44, no. 12, pp. 3625–3634, 2010. View at Publisher · View at Google Scholar · View at Scopus
  114. T. Sidlova, J. Novak, et al., “Dioxin-like and endocrine disruptive activity of traffic-contaminated soil samples,” Archives of Environmental Contamination and Toxicology, vol. 57, no. 4, pp. 639–650, 2009. View at Publisher · View at Google Scholar
  115. J. Novák, V. Jálová, J. P. Giesy, and K. Hilscherová, “Pollutants in particulate and gaseous fractions of ambient air interfere with multiple signaling pathways in vitro,” Environment International, vol. 35, no. 1, pp. 43–49, 2009. View at Publisher · View at Google Scholar · View at Scopus
  116. T. Mori, M. Inudo, Y. Takao et al., “In vitro evaluation of atmospheric particulate matter and sedimentation particles using yeast bioassay system,” Environmental Sciences, vol. 14, no. 4, pp. 203–210, 2007. View at Scopus
  117. T. H. Ueng, H. W. Wang, Y. P. Huang, and C. C. Hung, “Antiestrogenic effects of motorcycle exhaust particulate in MCF-7 human breast cancer cells and immature female rats,” Archives of Environmental Contamination and Toxicology, vol. 46, no. 4, pp. 454–462, 2004. View at Scopus
  118. K. Chaloupka, N. Harper, V. Krishnan, M. Santostefano, L. V. Rodriguez, and S. Safe, “Synergistic activity of polynuclear aromatic hydrocarbon mixtures as aryl hydrocarbon (Ah) receptor agonists,” Chemico-Biological Interactions, vol. 89, no. 2-3, pp. 141–158, 1993. View at Scopus
  119. W. H. Yang, Z. Y. Wang, H. L. Liu, and H. X. Yu, “Exploring the binding features of polybrominated diphenyl ethers as estrogen receptor antagonists: docking studies,” SAR and QSAR in Environmental Research, vol. 21, no. 3, pp. 351–367, 2010. View at Publisher · View at Google Scholar · View at Scopus
  120. K. Sanfilippo, B. Pinto, M. P. Colombini, U. Bartolucci, and D. Reali, “Determination of trace endocrine disruptors in ultrapure water for laboratory use by the yeast estrogen screen (YES) and chemical analysis (GC/MS),” Journal of Chromatography B, vol. 878, no. 15-16, pp. 1190–1194, 2010. View at Publisher · View at Google Scholar · View at Scopus
  121. E. C. Bonefeld-Jorgensen, “Biomonitoring in greenland: human biomarkers of exposure and effects—a short review,” Rural and Remote Health, vol. 10, no. 2, p. 1362, 2010. View at Scopus
  122. S. Chen, F. Zhang, M. A. Sherman, et al., “Structure-function studies of aromatase and its inhibitors: a progress report,” Journal of Steroid Biochemistry and Molecular Biology, vol. 86, no. 3–5, pp. 231–237, 2003. View at Publisher · View at Google Scholar
  123. S. A. Whitehead and S. Rice, “Endocrine-disrupting chemicals as modulators of sex steroid synthesis,” Best Practice and Research, vol. 20, no. 1, pp. 45–61, 2006. View at Publisher · View at Google Scholar · View at Scopus
  124. G. Raven, F. H. de Jong, J. M. Kaufman, and W. de Ronde, “In men, peripheral estradiol levels directly reflect the action of estrogens at the hypothalamo-pituitary level to inhibit gonadotropin secretion,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 9, pp. 3324–3328, 2006. View at Publisher · View at Google Scholar · View at Scopus
  125. J. Kohrle, “Environment and endocrinology: the case of thyroidology,” Annales d'Endocrinologie, vol. 69, no. 2, pp. 116–122, 2008. View at Publisher · View at Google Scholar
  126. P. J. Hofmann, L. Schomburg, and J. Köhrle, “Interference of endocrine disrupters with thyroid hormone receptor-dependent transactivation,” Toxicological Sciences, vol. 110, no. 1, pp. 125–137, 2009. View at Publisher · View at Google Scholar · View at Scopus
  127. N. K. Brar, C. Waggoner, J. A. Reyes, R. Fairey, and K. M. Kelley, “Evidence for thyroid endocrine disruption in wild fish in San Francisco Bay, California, USA. Relationships to contaminant exposures,” Aquatic Toxicology, vol. 96, no. 3, pp. 203–215, 2010. View at Publisher · View at Google Scholar · View at Scopus
  128. J. Maervoet, G. Vermeir, A. Covaci et al., “Association of thyroid hormone concentrations with levels of organochlorine compounds in cord blood of neonates,” Environmental Health Perspectives, vol. 115, no. 12, pp. 1780–1786, 2007. View at Scopus
  129. R. A. Heimeier and Y. B. Shi, “Amphibian metamorphosis as a model for studying endocrine disruption on vertebrate development: effect of bisphenol A on thyroid hormone action,” General and Comparative Endocrinology, vol. 168, no. 2, pp. 181–189, 2010. View at Publisher · View at Google Scholar · View at Scopus
  130. A. B. Dann and A. Hontela, “Triclosan: environmental exposure, toxicity and mechanisms of action,” Journal of Applied Toxicology, vol. 31, no. 4, pp. 285–311, 2011. View at Publisher · View at Google Scholar · View at Scopus
  131. S. N. Kuriyama, A. Wanner, A. A. Fidalgo-Neto, C. E. Talsness, W. Koerner, and I. Chahoud, “Developmental exposure to low-dose PBDE-99: tissue distribution and thyroid hormone levels,” Toxicology, vol. 242, no. 1–3, pp. 80–90, 2007. View at Publisher · View at Google Scholar · View at Scopus
  132. T. Schreiber, K. Gassmann, C. Götz et al., “Polybrominated diphenyl ethers induce developmental neurotoxicity in a human in vitro model: evidence for endocrine disruption,” Environmental Health Perspectives, vol. 118, no. 4, pp. 572–578, 2010. View at Publisher · View at Google Scholar · View at Scopus
  133. S. M. Lin, F. A. Chen, Y. F. Huang et al., “Negative associations between PBDE levels and thyroid hormones in cord blood,” International Journal of Hygiene and Environmental Health, vol. 214, no. 2, pp. 115–120, 2011. View at Publisher · View at Google Scholar · View at Scopus
  134. Y. Wei, Y. Liu, J. Wang, Y. Tao, and J. Dai, “Toxicogenomic analysis of the hepatic effects of perfluorooctanoic acid on rare minnows (Gobiocypris rarus),” Toxicology and Applied Pharmacology, vol. 226, no. 3, pp. 285–297, 2008. View at Publisher · View at Google Scholar · View at Scopus
  135. D. Melzer, N. Rice, M. H. Depledge, W. E. Henley, and T. S. Galloway, “Association between serum perfluorooctanoic acid (PFOA) and thyroid disease in the U.S. National Health and Nutrition Examination Survey,” Environmental Health Perspectives, vol. 118, no. 5, pp. 686–692, 2010. View at Publisher · View at Google Scholar · View at Scopus
  136. K. M. Crofton, E. S. Craft, J. M. Hedge et al., “Thyroid-hormone-disrupting chemicals: evidence for dose-dependent additivity or synergism,” Environmental Health Perspectives, vol. 113, no. 11, pp. 1549–1554, 2005. View at Publisher · View at Google Scholar · View at Scopus
  137. P. R. S. Kodavanti and M. C. Curras-Collazo, “Neuroendocrine actions of organohalogens: thyroid hormones, arginine vasopressin, and neuroplasticity,” Frontiers in Neuroendocrinology, vol. 31, no. 4, pp. 479–496, 2010. View at Publisher · View at Google Scholar · View at Scopus
  138. S. M. Lelli, N. R. Ceballos, M. B. Mazzetti, C. A. Aldonatti, and L. C. San Martín de Viale, “Hexachlorobenzene as hormonal disruptor-studies about glucocorticoids: their hepatic receptors, adrenal synthesis and plasma levels in relation to impaired gluconeogenesis,” Biochemical Pharmacology, vol. 73, no. 6, pp. 873–879, 2007. View at Publisher · View at Google Scholar · View at Scopus
  139. S. Billi de Catabbi, N. Sterin-Speziale, M. C. Fernandez, C. Minutolo, C. Aldonatti, and L. San Martin de Viale, “Time course of hexachlorobenzene-induced alterations of lipid metabolism and their relation to porphyria,” International Journal of Biochemistry and Cell Biology, vol. 29, no. 2, pp. 335–344, 1997. View at Publisher · View at Google Scholar · View at Scopus
  140. S. C. Billi de Catabbi, A. Faletti, F. Fuentes, L. C. San Martín de Viale, and A. C. Cochón, “Hepatic arachidonic acid metabolism is disrupted after hexachlorobenzene treatment,” Toxicology and Applied Pharmacology, vol. 204, no. 2, pp. 187–195, 2005. View at Publisher · View at Google Scholar · View at Scopus
  141. J. F. Viel, C. Daniau, S. Goria et al., “Risk for non Hodgkin's lymphoma in the vicinity of French municipal solid waste incinerators,” Environmental Health, vol. 7, article 51, 2008. View at Publisher · View at Google Scholar · View at Scopus
  142. J. F. Viel, N. Floret, E. Deconinck, J. F. Focant, E. De Pauw, and J. Y. Cahn, “Increased risk of non-Hodgkin lymphoma and serum organochlorine concentrations among neighbors of a municipal solid waste incinerator,” Environment International, vol. 37, no. 2, pp. 449–453, 2011. View at Publisher · View at Google Scholar · View at Scopus
  143. D. Werck-Reichhart and R. Feyereisen, “Cytochromes P450: a success story,” Genome Biology, vol. 1, no. 6, Article ID REVIEWS3003, 2000. View at Scopus
  144. C. Dietrich and B. Kaina, “The aryl hydrocarbon receptor (AhR) in the regulation of cell-cell contact and tumor growth,” Carcinogenesis, vol. 31, no. 8, pp. 1319–1328, 2010. View at Publisher · View at Google Scholar · View at Scopus
  145. A. Puga, C. Ma, and J. L. Marlowe, “The aryl hydrocarbon receptor cross-talks with multiple signal transduction pathways,” Biochemical Pharmacology, vol. 77, no. 4, pp. 713–722, 2009. View at Publisher · View at Google Scholar · View at Scopus
  146. J. E. Huff, A. G. Salmon, N. K. Hooper, and L. Zeise, “Long-term carcinogenesis studies on 2,3,7,8-tetrachlorodibenzo-p-dioxin and hexachlorodibenzo-p-dioxins,” Cell Biology and Toxicology, vol. 7, no. 1, pp. 67–94, 1991. View at Scopus
  147. M. Sjögren, L. Ehrenberg, and U. Rannug, “Relevance of different biological assays in assessing initiating and promoting properties of polycyclic aromatic hydrocarbons with respect to carcinogenic potency,” Mutation Research, vol. 358, no. 1, pp. 97–112, 1996. View at Publisher · View at Google Scholar · View at Scopus
  148. N. van Larebeke, L. Hens, P. Schepens et al., “The Belgian PCB and dioxin incident of January–June 1999: exposure data and potential impact on health,” Environmental Health Perspectives, vol. 109, no. 3, pp. 265–273, 2001. View at Scopus
  149. Z. Andrysik, J. Vondracek, et al., “Activation of the aryl hydrocarbon receptor is the major toxic mode of action of an organic extract of a reference urban dust particulate matter mixture: the role of polycyclic aromatic hydrocarbons,” Mutation Research, vol. 714, pp. 53–62, 2011. View at Publisher · View at Google Scholar
  150. H. R. Andersen, F. Nielsen, J. B. Nielsen, M. B. Kjaerstad, J. Baelum, and P. Grandjean, “Xeno-oestrogenic activity in serum as marker of occupational pesticide exposure,” Occupational and Environmental Medicine, vol. 64, no. 10, pp. 708–714, 2007. View at Publisher · View at Google Scholar · View at Scopus
  151. M. J. Lopez-Espinosa, E. Silva, A. Granada et al., “Assessment of the total effective xenoestrogen burden in extracts of human placentas,” Biomarkers, vol. 14, no. 5, pp. 271–277, 2009. View at Publisher · View at Google Scholar · View at Scopus
  152. E. C. Bonefeld-Jorgensen, P. S. Hjelmborg, T. S. Reinert et al., “Xenoestrogenic activity in blood of European and Inuit populations,” Environmental Health, vol. 5, article 12, 2006. View at Publisher · View at Google Scholar · View at Scopus
  153. E. Diamanti-Kandarakis, J. P. Bourguignon, L. C. Giudice et al., “Endocrine-disrupting chemicals: an Endocrine Society scientific statement,” Endocrine Reviews, vol. 30, no. 4, pp. 293–342, 2009. View at Publisher · View at Google Scholar · View at Scopus
  154. M. A. García, D. Peña, L. Álvarez et al., “Hexachlorobenzene induces cell proliferation and IGF-I signaling pathway in an estrogen receptor α-dependent manner in MCF-7 breast cancer cell line,” Toxicology Letters, vol. 192, no. 2, pp. 195–205, 2010. View at Publisher · View at Google Scholar · View at Scopus
  155. G. M. Calaf and D. Roy, “Cancer genes induced by malathion and parathion in the presence of estrogen in breast cells,” International Journal of Molecular Medicine, vol. 21, no. 2, pp. 261–268, 2008. View at Scopus
  156. S. Liu, S. Li, and Y. Du, “Polychlorinated biphenyls (PCBs) enhance metastatic properties of breast cancer cells by activating rho-associated kinase (ROCK),” PLoS ONE, vol. 5, no. 6, Article ID e11272, 2010. View at Publisher · View at Google Scholar · View at Scopus
  157. A. Ptak, G. Ludewig, A. Rak, W. Nadolna, M. Bochenek, and E. L. Gregoraszczuk, “Induction of cytochrome P450 1A1 in MCF-7 human breast cancer cells by 4-chlorobiphenyl (PCB3) and the effects of its hydroxylated metabolites on cellular apoptosis,” Environment International, vol. 36, no. 8, pp. 935–941, 2010. View at Publisher · View at Google Scholar · View at Scopus
  158. Y. I. Weng, P. Y. Hsu, S. Liyanarachchi et al., “Epigenetic influences of low-dose bisphenol A in primary human breast epithelial cells,” Toxicology and Applied Pharmacology, vol. 248, no. 2, pp. 111–121, 2010. View at Publisher · View at Google Scholar · View at Scopus
  159. E. W. LaPensee, T. R. Tuttle, S. R. Fox, and N. Ben-Jonathan, “Bisphenol A at low nanomolar doses confers chemoresistance in estrogen receptor-α-positive and -negative breast cancer cells,” Environmental Health Perspectives, vol. 117, no. 2, pp. 175–180, 2009. View at Publisher · View at Google Scholar · View at Scopus
  160. C. L. Siewit, B. Gengler, E. Vegas, R. Puckett, and M. C. Louie, “Cadmium promotes breast cancer cell proliferation by potentiating the interaction between ERα and c-Jun,” Molecular Endocrinology, vol. 24, no. 5, pp. 981–992, 2010. View at Publisher · View at Google Scholar · View at Scopus
  161. X. Yu, E. J. Filardo, and Z. A. Shaikh, “The membrane estrogen receptor GPR30 mediates cadmium-induced proliferation of breast cancer cells,” Toxicology and Applied Pharmacology, vol. 245, no. 1, pp. 83–90, 2010. View at Publisher · View at Google Scholar · View at Scopus
  162. L. Benbrahim-Tallaa, E. J. Tokar, B. A. Diwan, A. L. Dill, J. F. Coppin, and M. P. Waalkes, “Cadmium malignantly transforms normal human breast epithelial cells into a basal-like phenotype,” Environmental Health Perspectives, vol. 117, no. 12, pp. 1847–1852, 2009. View at Publisher · View at Google Scholar · View at Scopus
  163. S. V. Fernandez and J. Russo, “Estrogen and Xenoestrogens in breast cancer,” Toxicologic Pathology, vol. 38, no. 1, pp. 110–122, 2010. View at Publisher · View at Google Scholar · View at Scopus
  164. P. F. Valerón, J. J. Pestano, O. P. Luzardo, M. L. Zumbado, M. Almeida, and L. D. Boada, “Differential effects exerted on human mammary epithelial cells by environmentally relevant organochlorine pesticides either individually or in combination,” Chemico-Biological Interactions, vol. 180, no. 3, pp. 485–491, 2009. View at Publisher · View at Google Scholar · View at Scopus
  165. A. K. Charles and P. D. Darbre, “Oestrogenic activity of benzyl salicylate, benzyl benzoate and butylphenylmethylpropional (Lilial) in MCF7 human breast cancer cells in vitro,” Journal of Applied Toxicology, vol. 29, no. 5, pp. 422–434, 2009. View at Publisher · View at Google Scholar · View at Scopus
  166. D. J. Veselik, S. Divekar, S. Dakshanamurthy et al., “Activation of estrogen receptor-α by the anion nitrite,” Cancer Research, vol. 68, no. 10, pp. 3950–3958, 2008. View at Publisher · View at Google Scholar · View at Scopus
  167. M. D. Anway, C. Leathers, and M. K. Skinner, “Endocrine disruptor vinclozolin induced epigenetic transgenerational adult-onset disease,” Endocrinology, vol. 147, no. 12, pp. 5515–5523, 2006. View at Publisher · View at Google Scholar · View at Scopus
  168. S. Jenkins, C. Rowell, J. Wang, and C. A. Lamartiniere, “Prenatal TCDD exposure predisposes for mammary cancer in rats,” Reproductive Toxicology, vol. 23, no. 3, pp. 391–396, 2007. View at Publisher · View at Google Scholar · View at Scopus
  169. L. N. Vandenberg, M. V. Maffini, C. M. Schaeberle et al., “Perinatal exposure to the xenoestrogen bisphenol-A induces mammary intraductal hyperplasias in adult CD-1 mice,” Reproductive Toxicology, vol. 26, no. 3-4, pp. 210–219, 2008. View at Publisher · View at Google Scholar · View at Scopus
  170. T. J. Murray, M. V. Maffini, A. A. Ucci, C. Sonnenschein, and A. M. Soto, “Induction of mammary gland ductal hyperplasias and carcinoma in situ following fetal bisphenol A exposure,” Reproductive Toxicology, vol. 23, no. 3, pp. 383–390, 2007. View at Publisher · View at Google Scholar · View at Scopus
  171. M. Durando, L. Kass, J. Piva et al., “Prenatal bisphenol A exposure induces preneoplastic lesions in the mammary gland in wistar rats,” Environmental Health Perspectives, vol. 115, no. 1, pp. 80–86, 2007. View at Publisher · View at Google Scholar · View at Scopus
  172. S. Jenkins, N. Raghuraman, I. Eltoum, M. Carpenter, J. Russo, and C. A. Lamartiniere, “Oral exposure to Bisphenol A increases dimethylbenzanthraceneo-induced mammary cancer in rats,” Environmental Health Perspectives, vol. 117, no. 6, pp. 910–915, 2009. View at Publisher · View at Google Scholar · View at Scopus
  173. C. M. Markey, E. H. Luque, M. M. De Toro, C. Sonnenschein, and A. M. Soto, “In utero exposure to bisphenol A alters the development and tissue organization of the mouse mammary gland,” Biology of Reproduction, vol. 71, no. 5, p. 1753, 2004. View at Publisher · View at Google Scholar · View at Scopus
  174. J. Russo and I. H. Russo, “DNA labeling index and structure of the rat mammary gland as determinants of its susceptibility to carcinogenesis,” Journal of the National Cancer Institute, vol. 61, no. 6, pp. 1451–1459, 1978. View at Scopus
  175. N. Khanjani, J. L. Hoving, A. B. Forbes, and M. R. Sim, “Systematic review and meta-analysis of cyclodiene insecticides and breast cancer,” Journal of Environmental Science and Health C, vol. 25, no. 1, pp. 23–52, 2007. View at Publisher · View at Google Scholar · View at Scopus
  176. P. K. Mills and R. Yang, “Breast cancer risk in Hispanic agricultural workers in California,” International Journal of Occupational and Environmental Health, vol. 11, no. 2, pp. 123–131, 2005. View at Scopus
  177. G. S. Prins, “Endocrine disruptors and prostate cancer risk,” Endocrine-Related Cancer, vol. 15, no. 3, pp. 649–656, 2008. View at Publisher · View at Google Scholar · View at Scopus
  178. M. V. Maffini, B. S. Rubin, C. Sonnenschein, and A. M. Soto, “Endocrine disruptors and reproductive health: the case of bisphenol-A,” Molecular and Cellular Endocrinology, vol. 254-255, pp. 179–186, 2006. View at Publisher · View at Google Scholar · View at Scopus
  179. M. Schlumpf, S. Durrer, et al., “Developmental toxicity of UV filters and environmental exposure: a review,” International Journal of Andrology, vol. 31, no. 2, pp. 144–151, 2008. View at Publisher · View at Google Scholar
  180. M. Schlumpf, P. Schmid, S. Durrer et al., “Endocrine activity and developmental toxicity of cosmetic UV filters—an update,” Toxicology, vol. 205, no. 1-2, pp. 113–122, 2004. View at Publisher · View at Google Scholar · View at Scopus
  181. L. Hofkamp, S. Bradley, J. Tresguerres, W. Lichtensteiger, M. Schlumpf, and B. Timms, “Region-specific growth effects in the developing rat prostate following fetal exposure to estrogenic ultraviolet filters,” Environmental Health Perspectives, vol. 116, no. 7, pp. 867–872, 2008. View at Publisher · View at Google Scholar · View at Scopus
  182. L. Benbrahim-Tallaa, R. A. Waterland, A. L. Dill, M. M. Webber, and M. P. Waalkes, “Tumor suppressor gene inactivation during cadmium-induced malignant transformation of human prostate cells correlates with overexpression of de Novo DNA methyltransferase,” Environmental Health Perspectives, vol. 115, no. 10, pp. 1454–1459, 2007. View at Publisher · View at Google Scholar · View at Scopus
  183. M. P. Waalkes, “Cadmium carcinogenesis in review,” Journal of Inorganic Biochemistry, vol. 79, no. 1–4, pp. 241–244, 2000. View at Publisher · View at Google Scholar · View at Scopus
  184. L. Benbrahim-Tallaa and M. P. Waalkes, “Inorganic arsenic and human prostate cancer,” Environmental Health Perspectives, vol. 116, no. 2, pp. 158–164, 2008. View at Publisher · View at Google Scholar · View at Scopus
  185. V. Kumar, C. S. Yadav, S. Singh et al., “CYP 1A1 polymorphism and organochlorine pesticides levels in the etiology of prostate cancer,” Chemosphere, vol. 81, no. 4, pp. 464–468, 2010. View at Publisher · View at Google Scholar · View at Scopus
  186. R. Mahajan, M. R. Bonner, J. A. Hoppin, and M. C. R. Alavanja, “Phorate exposure and incidence of cancer in the agricultural health study,” Environmental Health Perspectives, vol. 114, no. 8, pp. 1205–1209, 2006. View at Publisher · View at Google Scholar · View at Scopus
  187. R. J. Aitken, N. E. Skakkebaek, and S. D. Roman, “Male reproductive health and the environment,” Medical Journal of Australia, vol. 185, no. 8, pp. 414–415, 2006. View at Scopus
  188. N. E. Skakkebæk, E. Rajpert-De Meyts, and K. M. Main, “Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects,” Human Reproduction, vol. 16, no. 5, pp. 972–978, 2001. View at Scopus
  189. N. Jørgensen, M. Vierula, R. Jacobsen et al., “Recent adverse trends in semen quality and testis cancer incidence among Finnish men,” International Journal of Andrology, vol. 34, no. 4, pp. e37–e48, 2011. View at Publisher · View at Google Scholar · View at Scopus
  190. M. Merhi, H. Raynal, E. Cahuzac, F. Vinson, J. P. Cravedi, and L. Gamet-Payrastre, “Occupational exposure to pesticides and risk of hematopoietic cancers: meta-analysis of case-control studies,” Cancer Causes and Control, vol. 18, no. 10, pp. 1209–1226, 2007. View at Publisher · View at Google Scholar · View at Scopus
  191. A. C. Pesatori, C. Zocchetti, S. Guercilena, D. Consonni, D. Turrini, and P. A. Bertazzi, “Dioxin exposure and non-malignant health effects: a mortality study,” Occupational and Environmental Medicine, vol. 55, no. 2, pp. 126–131, 1998. View at Scopus
  192. S. Fierens, H. Mairesse, J. F. Heilier et al., “Dioxin/polychlorinated biphenyl body burden, diabetes and endometriosis: findings in a population-based study in Belgium,” Biomarkers, vol. 8, no. 6, pp. 529–534, 2003. View at Publisher · View at Google Scholar · View at Scopus
  193. M. P. Longnecker, M. A. Klebanoff, J. W. Brock, and H. Zhou, “Polychlorinated biphenyl serum levels in pregnant subjects with diabetes,” Diabetes Care, vol. 24, no. 6, pp. 1099–1101, 2001. View at Scopus
  194. M. Cranmer, S. Louie, R. H. Kennedy, P. A. Kern, and V. A. Fonseca, “Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is associated with hyperinsulinemia and insulin resistance,” Toxicological Sciences, vol. 56, no. 2, pp. 431–436, 2000. View at Scopus
  195. L. Rylander, A. Rignell-Hydbom, and L. Hagmar, “A cross-sectional study of the association between persistent organochlorine pollutants and diabetes,” Environmental Health, vol. 4, article 28, 2005. View at Publisher · View at Google Scholar · View at Scopus
  196. D. H. Lee, I. K. Lee, K. Song et al., “A strong dose-response relation between serum concentrations of persistent organic pollutants and diabetes: results from the National Health and Examination Survey 1999–2002,” Diabetes Care, vol. 29, no. 7, pp. 1638–1644, 2006. View at Publisher · View at Google Scholar · View at Scopus
  197. D. H. Lee, I. K. Lee, M. Steffes, and D. R. Jacobs Jr., “Extended analyses of the association between serum concentrations of persistent organic pollutants and diabetes,” Diabetes Care, vol. 30, no. 6, pp. 1596–1598, 2007. View at Publisher · View at Google Scholar · View at Scopus
  198. D. H. Lee, I. N. K. Lee, S. H. Jin, M. Steffes, and D. R. Jacobs Jr., “Association between serum concentrations of persistent organic pollutants and insulin resistance among nondiabetic adults: results from the National Health and Nutrition Examination Survey 1999–2002,” Diabetes Care, vol. 30, no. 3, pp. 622–628, 2007. View at Publisher · View at Google Scholar · View at Scopus
  199. J. S. Lim, D. H. Lee, and D. R. Jacobs Jr., “Association of brominated flame retardants with diabetes and metabolic syndrome in the U.S. population, 2003–2004,” Diabetes Care, vol. 31, no. 9, pp. 1802–1807, 2008. View at Publisher · View at Google Scholar · View at Scopus
  200. K. Svensson, R. U. Hernández-Ramírez, A. Burguete-García et al., “Phthalate exposure associated with self-reported diabetes among Mexican women,” Environmental Research, vol. 111, no. 6, pp. 792–796, 2011. View at Publisher · View at Google Scholar · View at Scopus
  201. H. Uemura, K. Arisawa, M. Hiyoshi et al., “Associations of environmental exposure to dioxins with prevalent diabetes among general inhabitants in Japan,” Environmental Research, vol. 108, no. 1, pp. 63–68, 2008. View at Publisher · View at Google Scholar · View at Scopus
  202. D. H. Lee, M. W. Steffes, A. Sjödin, R. S. Jones, L. L. Needham, and D. R. Jacobs Jr., “Low dose of some persistent organic pollutants predicts type 2 diabetes: a nested case-control study,” Environmental Health Perspectives, vol. 118, no. 9, pp. 1235–1242, 2010. View at Publisher · View at Google Scholar · View at Scopus
  203. P. Alonso-Magdalena, I. Quesada, and A. Nadal, “Endocrine disruptors in the etiology of type 2 diabetes mellitus,” Nature Reviews Endocrinology, vol. 7, no. 6, pp. 346–353, 2011. View at Publisher · View at Google Scholar · View at Scopus
  204. J. Ruzzin, R. Petersen, E. Meugnier et al., “Persistent organic pollutant exposure leads to insulin resistance syndrome,” Environmental Health Perspectives, vol. 118, no. 4, pp. 465–471, 2010. View at Publisher · View at Google Scholar · View at Scopus
  205. T. L. Lassiter, I. T. Ryde, E. A. MacKillop et al., “Exposure of neonatal rats to parathion elicits sex-selective reprogramming of metabolism and alters the response to a high-fat diet in adulthood,” Environmental Health Perspectives, vol. 116, no. 11, pp. 1456–1462, 2008. View at Publisher · View at Google Scholar · View at Scopus
  206. S. Lim, S. Y. Ahn, I. C. Song et al., “Chronic exposure to the herbicide, atrazine, causes mitochondrial dysfunction and insulin resistance,” PLoS ONE, vol. 4, no. 4, Article ID e5186, 2009. View at Publisher · View at Google Scholar · View at Scopus
  207. A. B. Ropero, P. Onso-Magdalena, E. Garcia-Garcia, et al., “Bisphenol-A disruption of the endocrine pancreas and blood glucose homeostasis 2,” International Journal of Andrology, vol. 31, no. 2, pp. 194–200, 2008. View at Publisher · View at Google Scholar
  208. J. Boberg, S. Metzdorff, R. Wortziger et al., “Impact of diisobutyl phthalate and other PPAR agonists on steroidogenesis and plasma insulin and leptin levels in fetal rats,” Toxicology, vol. 250, no. 2-3, pp. 75–81, 2008. View at Publisher · View at Google Scholar · View at Scopus
  209. D. S. Paul, A. W. Harmon, V. Devesa, D. J. Thomas, and M. Stýblo, “Molecular mechanisms of the diabetogenic effects of arsenic inhibition of insulin signaling by arsenite and methylarsonous acid,” Environmental Health Perspectives, vol. 115, no. 5, pp. 734–742, 2007. View at Publisher · View at Google Scholar · View at Scopus
  210. M. P. Longnecker and J. L. Daniels, “Environmental contaminants as etiologic factors for diabetes,” Environmental Health Perspectives, vol. 109, supplement 6, pp. 871–876, 2001. View at Scopus
  211. C. J. Everett, I. Frithsen, and M. Player, “Relationship of polychlorinated biphenyls with type 2 diabetes and hypertension,” Journal of Environmental Monitoring, vol. 13, no. 2, pp. 241–251, 2011. View at Publisher · View at Google Scholar · View at Scopus
  212. R. W. Stahlhut, E. van Wijngaarden, T. D. Dye, S. Cook, and S. H. Swan, “Concentrations of urinary phthalate metabolites are associated with increased waist circumference and insulin resistance in adult U.S. males,” Environmental Health Perspectives, vol. 115, no. 6, pp. 876–882, 2007. View at Publisher · View at Google Scholar · View at Scopus
  213. M. P. Longnecker, “On confounded fishy results regarding arsenic and diabetes,” Epidemiology, vol. 20, no. 6, pp. 821–823, 2009. View at Publisher · View at Google Scholar · View at Scopus
  214. N. F. Kolachi, T. G. Kazi, et al., “Status of toxic metals in biological samples of diabetic mothers and their neonates,” Biological Trace Element Research, vol. 143, no. 1, pp. 196–212, 2011. View at Publisher · View at Google Scholar
  215. D. E. Hutcheon, J. Kantrowitz, R. N. Van Gelder, and E. Flynn, “Factors affecting plasma benzo[a]pyrene levels in environmental studies,” Environmental Research, vol. 32, no. 1, pp. 104–110, 1983. View at Scopus
  216. P. Irigaray, V. Ogier, S. Jacquenet et al., “Benzo[a]pyrene impairs β-adrenergic stimulation of adipose tissue lipolysis and causes weight gain in mice: a novel molecular mechanism of toxicity for a common food pollutant,” FEBS Journal, vol. 273, no. 7, pp. 1362–1372, 2006. View at Publisher · View at Google Scholar · View at Scopus
  217. W. Dhooge, E. Den Hond, G. Koppen et al., “Internal exposure to pollutants and body size in Flemish adolescents and adults: associations and dose-response relationships,” Environment International, vol. 36, no. 4, pp. 330–337, 2010. View at Publisher · View at Google Scholar · View at Scopus
  218. F. Grün and B. Blumberg, “Endocrine disrupters as obesogens,” Molecular and Cellular Endocrinology, vol. 304, no. 1-2, pp. 19–29, 2009. View at Publisher · View at Google Scholar · View at Scopus
  219. F. Grun, “Obesogens,” Current Opinion in Endocrinology, Diabetes and Obesity, vol. 17, no. 5, pp. 453–459, 2010. View at Publisher · View at Google Scholar
  220. E. E. Hatch, J. W. Nelson, M. M. Qureshi et al., “Association of urinary phthalate metabolite concentrations with body mass index and waist circumference: a cross-sectional study of NHANES data, 1999–2002,” Environmental Health, vol. 7, article 27, 2008. View at Publisher · View at Google Scholar · View at Scopus
  221. A. A. Hoppe and G. B. Carey, “Polybrominated diphenyl ethers as endocrine disruptors of adipocyte metabolism,” Obesity, vol. 15, no. 12, pp. 2942–2950, 2007. View at Publisher · View at Google Scholar · View at Scopus
  222. T. I. Halldorsson, D. Rytter, et al., “Prenatal exposure to perfluorooctanoate and risk of overweight at 20 years of age: a prospective cohort study,” Environmental Health Perspectives, vol. 120, no. 5, pp. 668–673, 2012. View at Publisher · View at Google Scholar
  223. J. J. Heindel and F. S. vom Saal, “Role of nutrition and environmental endocrine disrupting chemicals during the perinatal period on the aetiology of obesity,” Molecular and Cellular Endocrinology, vol. 304, no. 1-2, pp. 90–96, 2009. View at Publisher · View at Google Scholar · View at Scopus
  224. D. H. Lee, I. K. Lee, M. Porta, M. Steffes, and D. R. Jacobs Jr., “Relationship between serum concentrations of persistent organic pollutants and the prevalence of metabolic syndrome among non-diabetic adults: results from the National Health and Nutrition Examination Survey 1999–2002,” Diabetologia, vol. 50, no. 9, pp. 1841–1851, 2007. View at Publisher · View at Google Scholar · View at Scopus
  225. H. Uemura, K. Arisawa, M. Hiyoshi et al., “Prevalence of metabolic syndrome associated with body burden levels of dioxin and related compounds among Japan's general population,” Environmental Health Perspectives, vol. 117, no. 4, pp. 568–573, 2009. View at Publisher · View at Google Scholar · View at Scopus
  226. S. S. White, S. E. Fenton, and E. P. Hines, “Endocrine disrupting properties of perfluorooctanoic acid,” Journal of Steroid Biochemistry and Molecular Biology, vol. 127, no. 1–2, pp. 16–26, 2011. View at Publisher · View at Google Scholar · View at Scopus
  227. R. Carson, Silent Spring, Houghton Mifflin, Boston, Mass, USA, 1962.
  228. M. Gilbertson, T. Kubiak, J. Ludwig, and G. Fox, “Great Lakes embryo mortality, edema, and deformities syndrome (GLEMEDS) in colonical fish-eating birds: similarity to chick-edema disease,” Journal of Toxicology and Environmental Health, vol. 33, no. 4, pp. 455–520, 1991. View at Scopus
  229. L. J. Guillette, T. S. Gross, G. R. Masson, J. M. Matter, H. F. Percival, and A. R. Woodward, “Developmental abnormalities of the gonad and abnormal sex hormone concentrations in juvenile alligators from contaminated and control lakes in Florida,” Environmental Health Perspectives, vol. 102, no. 8, pp. 680–688, 1994. View at Scopus
  230. T. Colborn and C. Clement, Chemically-Induced Alterations in Sexual and Functional Development: The Wildlife/Human Connection, Princeton University Press, Princeton, NJ, USA, 1992.
  231. T. Colborn, D. Dumanoski, and J. P. Myers, Our stolen future, Dutton, Penguin Books, New York, NY, USA, 1996.
  232. T. B. Hayes, A. Collins, M. Lee et al., “Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 8, pp. 5476–5480, 2002. View at Publisher · View at Google Scholar · View at Scopus
  233. Z. Shi, K. E. Valdez, A. Y. Ting, A. Franczak, S. L. Gum, and B. K. Petroff, “Ovarian endocrine disruption underlies premature reproductive senescence following environmentally relevant chronic exposure to the aryl hydrocarbon receptor agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin,” Biology of Reproduction, vol. 76, no. 2, pp. 198–202, 2007. View at Publisher · View at Google Scholar · View at Scopus
  234. S. Salian, T. Doshi, and G. Vanage, “Perinatal exposure of rats to Bisphenol A affects the fertility of male offspring,” Life Sciences, vol. 85, no. 21-22, pp. 742–752, 2009. View at Publisher · View at Google Scholar · View at Scopus
  235. C. A. Mackenzie, A. Lockridge, and M. Keith, “Declining sex ratio in a First Nation community,” Environmental Health Perspectives, vol. 113, no. 10, pp. 1295–1298, 2005. View at Publisher · View at Google Scholar · View at Scopus
  236. P. Mocarelli, P. Brambilla, M. P. Gerthoux, D. G. Patterson, and L. L. Needham, “Change in sex ratio with exposure to dioxin,” The Lancet, vol. 348, no. 9024, p. 409, 1996. View at Scopus
  237. N. A. van Larebeke, A. J. Sasco, J. T. Brophy, M. M. Keith, M. Gilbertson, and A. Watterson, “Sex ratio changes as sentinel health events of endocrine disruption,” International Journal of Occupational and Environmental Health, vol. 14, no. 2, pp. 138–143, 2008. View at Scopus
  238. A. L. Herbst, M. M. Hubby, F. Azizi, and M. M. Makii, “Reproductive and gynecologic surgical experience in diethylstilbestrol-exposed daughters,” American Journal of Obstetrics and Gynecology, vol. 141, no. 8, pp. 1019–1028, 1981. View at Scopus
  239. F. I. Sharara, D. B. Seifer, and J. A. Flaws, “Environmental toxicants and female reproduction,” Fertility and Sterility, vol. 70, no. 4, pp. 613–622, 1998. View at Publisher · View at Google Scholar · View at Scopus
  240. S. J. Genuis, “Health issues and the environment—an emerging paradigm for providers of obstetrical and gynaecological health care,” Human Reproduction, vol. 21, no. 9, pp. 2201–2208, 2006. View at Publisher · View at Google Scholar · View at Scopus
  241. T. K. Jensen, T. B. Henriksen, N. H. I. Hjollund et al., “Adult and prenatal exposures to tobacco smoke as risk indicators of fertility among 430 Danish couples,” American Journal of Epidemiology, vol. 148, no. 10, pp. 992–997, 1998. View at Scopus
  242. G. S. Cooper, M. A. Klebanoff, J. Promislow, J. W. Brock, and M. P. Longnecker, “Polychlorinated biphenyls and menstrual cycle characteristics,” Epidemiology, vol. 16, no. 2, pp. 191–200, 2005. View at Publisher · View at Google Scholar · View at Scopus
  243. G. C. Windham, D. Lee, P. Mitchell, M. Anderson, M. Petreas, and B. Lasley, “Exposure to organochlorine compounds and effects on ovarian function,” Epidemiology, vol. 16, no. 2, pp. 182–190, 2005. View at Publisher · View at Google Scholar · View at Scopus
  244. B. A. Cohn, P. M. Cirillo, M. S. Wolff et al., “DDT and DDE exposure in mothers and time to pregnancy in daughters,” The Lancet, vol. 361, no. 9376, pp. 2205–2206, 2003. View at Publisher · View at Google Scholar · View at Scopus
  245. C. Fei, J. K. McLaughlin, L. Lipworth, and J. Olsen, “Maternal levels of perfluorinated chemicals and subfecundity,” Human Reproduction, vol. 24, no. 5, pp. 1200–1205, 2009. View at Publisher · View at Google Scholar · View at Scopus
  246. S. A. Missmer, S. E. Hankinson, D. Spiegelman, R. L. Barbieri, K. B. Michels, and D. J. Hunter, “In utero exposures and the incidence of endometriosis,” Fertility and Sterility, vol. 82, no. 6, pp. 1501–1508, 2004. View at Publisher · View at Google Scholar · View at Scopus
  247. L. Cobellis, G. Latini, C. deFelice et al., “High plasma concentrations of di-(2-ethylhexyl)-phthalate in women with endometriosis,” Human Reproduction, vol. 18, no. 7, pp. 1512–1515, 2003. View at Publisher · View at Google Scholar · View at Scopus
  248. B. S. Reddy, R. Rozati, B. V. R. Reddy, and N. V. V. S. S. Raman, “Association of phthalate esters with endometriosis in Indian women,” An International Journal of Obstetrics and Gynaecology, vol. 113, no. 5, pp. 515–520, 2006. View at Publisher · View at Google Scholar · View at Scopus
  249. L. Storgaard, J. P. Bonde, E. Ernst et al., “Does smoking during pregnancy affect sons' sperm counts?” Epidemiology, vol. 14, no. 3, pp. 278–286, 2003. View at Publisher · View at Google Scholar · View at Scopus
  250. T. K. Jensenl, N. Jørgensen, M. Punab et al., “Association of in Utero exposure to maternal smoking with reduced semen quality and testis size in adulthood: a cross-sectional study of 1,770 young men from the general population in five European Countries,” American Journal of Epidemiology, vol. 159, no. 1, pp. 49–58, 2004. View at Publisher · View at Google Scholar · View at Scopus
  251. P. C. Hsu, W. Huang, W. J. Yao, M. H. Wu, Y. L. Guo, and G. H. Lambert, “Sperm changes in men exposed to polychlorinated biphenyls and dibenzofurans,” Journal of the American Medical Association, vol. 289, no. 22, pp. 2943–2944, 2003. View at Publisher · View at Google Scholar · View at Scopus
  252. Y. L. Guo, P. C. Hsu, C. C. Hsu, and G. H. Lambert, “Semen quality after prenatal exposure to polychlorinated biphenyls and dibenzofurans,” The Lancet, vol. 356, no. 9237, pp. 1240–1241, 2000. View at Scopus
  253. P. Mocarelli, P. M. Gerthoux, D. G. Patterson et al., “Dioxin exposure, from infancy through puberty, produces endocrine disruption and affects human semen quality,” Environmental Health Perspectives, vol. 116, no. 1, pp. 70–77, 2008. View at Publisher · View at Google Scholar · View at Scopus
  254. J. W. Dallinga, E. J. C. Moonen, J. C. M. Dumoulin, J. L. H. Evers, J. P. M. Geraedts, and J. C. S. Kleinjans, “Decreased human semen quality and organochlorine compounds in blood,” Human Reproduction, vol. 17, no. 8, pp. 1973–1979, 2002. View at Scopus
  255. J. Richthoff, L. Rylander, B. A. G. Jönsson et al., “Serum levels of 2,2,4,4,5,5-hexaclorobiphenyl (CB-153) in relation to markers of reproductive function in young males from the general Swedish population,” Environmental Health Perspectives, vol. 111, no. 4, pp. 409–413, 2003. View at Scopus
  256. R. Hauser, Z. Chen, L. Pothier, L. Ryan, and L. Altshul, “The relationship between human semen parameters and environmental exposure to polychlorinated biphenyls and p,p-DDE,” Environmental Health Perspectives, vol. 111, no. 12, pp. 1505–1511, 2003. View at Scopus
  257. A. Rignell-Hydbom, L. Rylander, A. Giwercman, B. A. G. Jönsson, P. Nilsson-Ehle, and L. Hagmar, “Exposure to CB-153 and p,p′-DDE and male reproductive function,” Human Reproduction, vol. 19, no. 9, pp. 2066–2075, 2004. View at Publisher · View at Google Scholar · View at Scopus
  258. S. H. Swan, R. L. Kruse, F. Liu et al., “Semen quality relation to biomarkers of pesticide exposure,” Environmental Health Perspectives, vol. 111, no. 12, pp. 1478–1484, 2003. View at Scopus
  259. J. D. Meeker, L. Ryan, D. B. Barr et al., “The relationship of urinary metabolites of carbaryl/naphthalene and chlorpyrifos with human semen quality,” Environmental Health Perspectives, vol. 112, no. 17, pp. 1665–1670, 2004. View at Publisher · View at Google Scholar · View at Scopus
  260. U. N. Joensen, R. Bossi, H. Leffers, A. A. Jensen, N. E. Skakkebæk, and N. Jørgensen, “Do Perfluoroalkyl compounds impair human semen quality?” Environmental Health Perspectives, vol. 117, no. 6, pp. 923–927, 2009. View at Publisher · View at Google Scholar · View at Scopus
  261. S. Tališman, P. Cvitković, J. Jurasović, A. Pizent, M. Gavella, and B. Ročić, “Semen quality and reproductive endocrine function in relation to biomarkers of lead, cadmium, zinc, and copper in men,” Environmental Health Perspectives, vol. 108, no. 1, pp. 45–53, 2000. View at Scopus
  262. L. Fenster, K. Waller, G. Windham et al., “Trihalomethane levels in home tap water and semen quality,” Epidemiology, vol. 14, no. 6, pp. 650–658, 2003. View at Publisher · View at Google Scholar · View at Scopus
  263. S. G. Selevan, L. Borkovec, V. L. Slott et al., “Semen quality and reproductive health of young Czech men exposed to seasonal air pollution,” Environmental Health Perspectives, vol. 108, no. 9, pp. 887–894, 2000. View at Scopus
  264. J. Rubes, S. G. Selevan, D. P. Evenson et al., “Episodic air pollution is associated with increased DNA fragmentation in human sperm without other changes in semen quality,” Human Reproduction, vol. 20, no. 10, pp. 2776–2783, 2005. View at Publisher · View at Google Scholar · View at Scopus
  265. B. A. G. Jönsson, J. Richthoff, L. Rylander, A. Giwercman, and L. Hagmar, “Urinary phthalate metabolites and biomarkers of reproductive function in young men,” Epidemiology, vol. 16, no. 4, pp. 487–493, 2005. View at Publisher · View at Google Scholar · View at Scopus
  266. R. Hauser, J. D. Meeker, S. Duty, M. J. Silva, and A. M. Calafat, “Altered semen quality in relation to urinary concentrations of phthalate monoester and oxidative metabolites,” Epidemiology, vol. 17, no. 6, pp. 682–691, 2006. View at Publisher · View at Google Scholar · View at Scopus
  267. R. Hauser, J. D. Meeker, N. P. Singh et al., “DNA damage in human sperm is related to urinary levels of phthalate monoester and oxidative metabolites,” Human Reproduction, vol. 22, no. 3, pp. 688–695, 2007. View at Publisher · View at Google Scholar · View at Scopus
  268. S. Swan, K. M. Main, F. Liu, et al., “Decrease in anogenital distance among male infants with prenatal phthalate exposure,” Environmental Health Perspectives, vol. 113, no. 9, Article ID A583, 2005. View at Scopus
  269. S. H. Swan, F. Liu, J. W. Overstreet, C. Brazil, and N. E. Skakkebaek, “Semen quality of fertile US males in relation to their mothers' beef consumption during pregnancy,” Human Reproduction, vol. 22, no. 6, pp. 1497–1502, 2007. View at Publisher · View at Google Scholar · View at Scopus
  270. F. S. vom Saal, “Could hormone residues be involved?” Human Reproduction, vol. 22, no. 6, pp. 1503–1505, 2007. View at Publisher · View at Google Scholar · View at Scopus
  271. P. D. Gluckman, M. A. Hanson, and A. S. Beedle, “Early life events and their consequences for later disease: a life history and evolutionary perspective,” American Journal of Human Biology, vol. 19, no. 1, pp. 1–19, 2007. View at Publisher · View at Google Scholar · View at Scopus
  272. T. K. Jensen, N. Jørgensen, C. Asklund et al., “Self-rated health and semen quality among 3,457 young Danish men,” Fertility and Sterility, vol. 88, no. 5, pp. 1366–1373, 2007. View at Publisher · View at Google Scholar · View at Scopus
  273. T. K. Jensen, R. Jacobsen, K. Christensen, N. C. Nielsen, and E. Bostofte, “Good semen quality and life expectancy: a cohort study of 43,277 men,” American Journal of Epidemiology, vol. 170, no. 5, pp. 559–565, 2009. View at Publisher · View at Google Scholar · View at Scopus
  274. K. A. Boisen, M. Kaleva, K. M. Main et al., “Difference in prevalence of congenital cryptorchidism in infants between two Nordic countries,” The Lancet, vol. 363, no. 9417, pp. 1264–1269, 2004. View at Publisher · View at Google Scholar · View at Scopus
  275. K. A. Boisen, M. Chellakooty, I. M. Schmidt et al., “Hypospadias in a cohort of 1072 Danish newborn boys: prevalence and relationship to placental weight, anthropometrical measurements at birth, and reproductive hormone levels at three months of age,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 7, pp. 4041–4046, 2005. View at Publisher · View at Google Scholar · View at Scopus
  276. N. E. Skakkebaek, N. Jorgensen, et al., “Is human fecundity declining?” International Journal of Andrology, vol. 29, no. 1, pp. 2–11, 2006. View at Publisher · View at Google Scholar
  277. M. H. Hsieh, B. N. Breyer, M. L. Eisenberg, and L. S. Baskin, “Associations among hypospadias, cryptorchidism, anogenital distance, and endocrine disruption,” Current Urology Reports, vol. 9, no. 2, pp. 137–142, 2008. View at Publisher · View at Google Scholar · View at Scopus
  278. F. Perera, K. Hemminki, W. Jedrychowski et al., “In Utero DNA damage from environmental pollution is associated with somatic gene mutation in newborns,” Cancer Epidemiology Biomarkers and Prevention, vol. 11, no. 10, pp. 1134–1137, 2002. View at Scopus
  279. L. S. Birnbaum and S. E. Fenton, “Cancer and developmental exposure to endocrine disruptors,” Environmental Health Perspectives, vol. 111, no. 4, pp. 389–394, 2003. View at Scopus
  280. G. S. Prins, L. Birch, W. Y. Tang, and S. M. Ho, “Developmental estrogen exposures predispose to prostate carcinogenesis with aging,” Reproductive Toxicology, vol. 23, no. 3, pp. 374–382, 2007. View at Publisher · View at Google Scholar · View at Scopus
  281. G. S. Prins, W. Y. Tang, J. Belmonte, and S. M. Ho, “Perinatal exposure to oestradiol and bisphenol A alters the prostate epigenome and increases susceptibility to carcinogenesis,” Basic and Clinical Pharmacology and Toxicology, vol. 102, no. 2, pp. 134–138, 2008. View at Publisher · View at Google Scholar · View at Scopus
  282. A. M. Soto, L. N. Vandenberg, M. V. Maffini, and C. Sonnenschein, “Does breast cancer start in the womb?” Basic and Clinical Pharmacology and Toxicology, vol. 102, no. 2, pp. 125–133, 2008. View at Publisher · View at Google Scholar · View at Scopus
  283. M. Soffritti, F. Belpoggi, D. D. Esposti, L. Falcioni, and L. Bua, “Consequences of exposure to carcinogens beginning during developmental life,” Basic and Clinical Pharmacology and Toxicology, vol. 102, no. 2, pp. 118–124, 2008. View at Publisher · View at Google Scholar · View at Scopus
  284. M. H. Vickers, S. O. Krechowec, and B. H. Breier, “Is later obesity programmed in utero?” Current Drug Targets, vol. 8, no. 8, pp. 923–934, 2007. View at Publisher · View at Google Scholar · View at Scopus
  285. R. R. Newbold, E. Padilla-Banks, R. J. Snyder, and W. N. Jefferson, “Perinatal exposure to environmental estrogens and the development of obesity,” Molecular Nutrition and Food Research, vol. 51, no. 7, pp. 912–917, 2007. View at Publisher · View at Google Scholar · View at Scopus
  286. M. A. Hanson and P. D. Gluckman, “Developmental origins of health and disease: new insights,” Basic and Clinical Pharmacology and Toxicology, vol. 102, no. 2, pp. 90–93, 2008. View at Publisher · View at Google Scholar · View at Scopus
  287. B. K. Barlow, E. K. Richfield, D. A. Cory-Slechta, and M. Thiruchelvam, “A fetal risk factor for Parkinson's disease,” Developmental Neuroscience, vol. 26, no. 1, pp. 11–23, 2004. View at Publisher · View at Google Scholar · View at Scopus
  288. B. K. Barlow, D. A. Cory-Slechta, E. K. Richfield, and M. Thiruchelvam, “The gestational environment and Parkinson's disease: evidence for neurodevelopmental origins of a neurodegenerative disorder,” Reproductive Toxicology, vol. 23, no. 3, pp. 457–470, 2007. View at Publisher · View at Google Scholar · View at Scopus
  289. D. A. Cory-Slechta, M. Thiruchelvam, B. K. Barlow, and E. K. Richfield, “Developmental pesticide models of the Parkinson disease phenotype,” Environmental Health Perspectives, vol. 113, no. 9, pp. 1263–1270, 2005. View at Publisher · View at Google Scholar · View at Scopus
  290. P. M. Carvey, A. Punati, and M. B. Newman, “Progressive dopamine neuron loss in Parkinson's disease: the multiple hit hypothesis,” Cell Transplantation, vol. 15, no. 3, pp. 239–250, 2006. View at Publisher · View at Google Scholar · View at Scopus
  291. S. A. Lloyd, C. J. Faherty, and R. J. Smeyne, “Adult and in utero exposure to cocaine alters sensitivity to the parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine,” Neuroscience, vol. 137, no. 3, pp. 905–913, 2006. View at Publisher · View at Google Scholar · View at Scopus
  292. M. G. Ross, M. Desai, O. Khorram, R. A. McKnight, R. H. Lane, and J. Torday, “Gestational programming of offspring obesity: a potential contributor to Alzheimer's disease,” Current Alzheimer Research, vol. 4, no. 2, pp. 213–217, 2007. View at Publisher · View at Google Scholar · View at Scopus
  293. S. Ceccatelli, C. Tamm, Q. Zhang, and M. Chen, “Mechanisms and modulation of neural cell damage induced by oxidative stress,” Physiology and Behavior, vol. 92, no. 1-2, pp. 87–92, 2007. View at Publisher · View at Google Scholar · View at Scopus
  294. J. Wu, M. R. Basha, and N. H. Zawia, “The environment, epigenetics and amyloidogenesis,” Journal of Molecular Neuroscience, vol. 34, no. 1, pp. 1–7, 2008. View at Publisher · View at Google Scholar · View at Scopus
  295. J. Verheyde and M. A. Benotmane, “Unraveling the fundamental molecular mechanisms of morphological and cognitive defects in the irradiated brain,” Brain Research Reviews, vol. 53, no. 2, pp. 312–320, 2007. View at Publisher · View at Google Scholar · View at Scopus
  296. D. A. Lewis and P. Levitt, “Schizophrenia as a disorder of neurodevelopment,” Annual Review of Neuroscience, vol. 25, pp. 409–432, 2002. View at Publisher · View at Google Scholar · View at Scopus
  297. K. N. Loganovsky, S. V. Volovik, K. G. Manton, D. A. Bazyka, and P. Flor-Henry, “Whether ionizing radiation is a risk factor for schizophrenia spectrum disorders?” World Journal of Biological Psychiatry, vol. 6, no. 4, pp. 212–230, 2005. View at Publisher · View at Google Scholar · View at Scopus
  298. R. M. Steinberg, T. E. Juenger, and A. C. Gore, “The effects of prenatal PCBs on adult female paced mating reproductive behaviors in rats,” Hormones and Behavior, vol. 51, no. 3, pp. 364–372, 2007. View at Publisher · View at Google Scholar · View at Scopus
  299. Y. W. Chung and L. G. Clemens, “Effects of perinatal exposure to polychlorinated biphenyls on development of female sexual behavior,” Bulletin of Environmental Contamination and Toxicology, vol. 62, no. 6, pp. 664–670, 1999. View at Publisher · View at Google Scholar · View at Scopus
  300. Y. W. Chung, A. A. Nunez, and L. G. Clemens, “Effects of neonatal polychlorinated biphenyl exposure on female sexual behavior,” Physiology and Behavior, vol. 74, no. 3, pp. 363–370, 2001. View at Publisher · View at Google Scholar · View at Scopus
  301. H. B. Patisaul, J. R. Luskin, and M. E. Wilson, “A soy supplement and tamoxifen inhibit sexual behavior in female rats,” Hormones and Behavior, vol. 45, no. 4, pp. 270–277, 2004. View at Publisher · View at Google Scholar · View at Scopus
  302. P. L. Whitten, C. Lewis, E. Russell, and F. Naftolin, “Phytoestrogen influences on the development of behavior and gonadotropin function,” Proceedings of the Society for Experimental Biology and Medicine, vol. 208, no. 1, pp. 82–86, 1995. View at Scopus
  303. T. Kouki, M. Okamoto, S. Wada, M. Kishitake, and K. Yamanouchi, “Suppressive effect of neonatal treatment with a phytoestrogen, coumestrol, on lordosis and estrous cycle in female rats,” Brain Research Bulletin, vol. 64, no. 5, pp. 449–454, 2005. View at Publisher · View at Google Scholar · View at Scopus
  304. A. C. Gore, “Developmental programming and endocrine disruptor effects on reproductive neuroendocrine systems,” Frontiers in Neuroendocrinology, vol. 29, no. 3, pp. 358–374, 2008. View at Publisher · View at Google Scholar · View at Scopus
  305. “Report (in Dutch) on the selection of genes for measuring the effects of pollutants on gene expression,” http://www.milieu-en-gezondheid.be/rapporten/STP%20MG%20-%20Vraagbaak%20Genexpressie_DEF.pdf.
  306. E. R. Levin, “Integration of the extranuclear and nuclear actions of estrogen,” Molecular Endocrinology, vol. 19, no. 8, pp. 1951–1959, 2005. View at Publisher · View at Google Scholar · View at Scopus
  307. A. Nadal, A. B. Ropero, O. Laribi, M. Maillet, E. Fuentes, and B. Soria, “Nongenomic actions of estrogens and xenoestrogens by binding at a plasma membrane receptor unrelated to estrogen receptor α and estrogen receptor β,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 21, pp. 11603–11608, 2000. View at Scopus
  308. G. G. J. M. Kuiper, B. Carlsson, K. Grandien et al., “Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors and α and β,” Endocrinology, vol. 138, no. 3, pp. 863–870, 1997. View at Publisher · View at Google Scholar · View at Scopus
  309. P. F. Pilch and M. P. Czech, “Hormone binding alters the conformation of the insulin receptor,” Science, vol. 210, no. 4474, pp. 1152–1153, 1980. View at Scopus
  310. L. A. Luck, J. L. Barse, A. M. Luck, and C. H. Peck, “Conformational changes in the human estrogen receptor observed by 19F NMR,” Biochemical and Biophysical Research Communications, vol. 270, no. 3, pp. 988–991, 2000. View at Publisher · View at Google Scholar · View at Scopus
  311. G. F. Allan, S. Y. Tsai, M. J. Tsai, and B. W. O'Malley, “Ligand-dependent conformational changes in the progesterone receptor are necessary for events that follow DNA binding,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 24, pp. 11750–11754, 1992. View at Publisher · View at Google Scholar · View at Scopus
  312. J. A. Schwartz and D. F. Skafar, “Ligand-mediated modulation of estrogen receptor conformation by estradiol analogs,” Biochemistry, vol. 32, no. 38, pp. 10109–10115, 1993. View at Publisher · View at Google Scholar · View at Scopus
  313. R. V. Weatherman, C. Y. Chang, N. J. Clegg et al., “Ligand-selective interactions of ER detected in living cells by fluorescence resonance energy transfer,” Molecular Endocrinology, vol. 16, no. 3, pp. 487–496, 2002. View at Publisher · View at Google Scholar · View at Scopus
  314. V. Vijayanathan, N. J. Greenfield, T. J. Thomas et al., “Effects of estradiol and 4-hydroxytamoxifen on the conformation, thermal stability, and DNA recognition of estrogen receptor β,” Biochemistry and Cell Biology, vol. 85, no. 1, pp. 1–10, 2007. View at Publisher · View at Google Scholar · View at Scopus
  315. H. Watanabe, A. Suzuki, M. Kobayashi, D. B. Lubahn, H. Handa, and T. Iguchi, “Similarities and differences in uterine gene expression patterns caused by treatment with physiological and non-physiological estrogens,” Journal of Molecular Endocrinology, vol. 31, no. 3, pp. 487–497, 2003. View at Publisher · View at Google Scholar · View at Scopus
  316. T. Adachi, K. B. Koh, H. Tainaka et al., “Toxicogenomic difference between diethylstilbestrol and 17β-estradiol in mouse testicular gene expression by neonatal exposure,” Molecular Reproduction and Development, vol. 67, no. 1, pp. 19–25, 2004. View at Publisher · View at Google Scholar · View at Scopus
  317. F. Wu, S. Khan, Q. Wu, R. Barhoumi, R. Burghardt, and S. Safe, “Ligand structure-dependent activation of estrogen receptor α/Sp by estrogens and xenoestrogens,” Journal of Steroid Biochemistry and Molecular Biology, vol. 110, no. 1-2, pp. 104–115, 2008. View at Publisher · View at Google Scholar · View at Scopus
  318. H. B. Patisaul, P. L. Whitten, and L. J. Young, “Regulation of estrogen receptor beta mRNA in the brain: opposite effects of 17β-estradiol and the phytoestrogen, coumestrol,” Molecular Brain Research, vol. 67, no. 1, pp. 165–171, 1999. View at Publisher · View at Google Scholar · View at Scopus
  319. C. S. Watson, R. A. Alyea, Y. J. Jeng, and M. Y. Kochukov, “Nongenomic actions of low concentration estrogens and xenoestrogens on multiple tissues,” Molecular and Cellular Endocrinology, vol. 274, no. 1-2, pp. 1–7, 2007. View at Publisher · View at Google Scholar · View at Scopus
  320. J. A. McLachlan, K. S. Korach, R. R. Newbold, and G. H. Degen, “Diethylstilbestrol and other estrogens in the environment,” Fundamental and Applied Toxicology, vol. 4, no. 5, pp. 686–691, 1984. View at Scopus
  321. A. L. Wozniak, N. N. Bulayeva, and C. S. Watson, “Xenoestrogens at picomolar to nanomolar concentrations trigger membrane estrogen receptor-α-mediated Ca2+ fluxes and prolactin release in GH3/B6 pituitary tumor cells,” Environmental Health Perspectives, vol. 113, no. 4, pp. 431–439, 2005. View at Publisher · View at Google Scholar · View at Scopus
  322. P. Thomas and J. Dong, “Binding and activation of the seven-transmembrane estrogen receptor GPR30 by environmental estrogens: a potential novel mechanism of endocrine disruption,” Journal of Steroid Biochemistry and Molecular Biology, vol. 102, no. 1–5, pp. 175–179, 2006. View at Publisher · View at Google Scholar · View at Scopus
  323. E. Silva, A. Kabil, and A. Kortenkamp, “Cross-talk between non-genomic and genomic signalling pathways—distinct effect profiles of environmental estrogens,” Toxicology and Applied Pharmacology, vol. 245, no. 2, pp. 160–170, 2010. View at Publisher · View at Google Scholar · View at Scopus
  324. P. Ciana, F. Scarlatti, A. Biserni et al., “The dynamics of estrogen receptor activity,” Maturitas, vol. 54, no. 4, pp. 315–320, 2006. View at Publisher · View at Google Scholar · View at Scopus
  325. A. Nadal, M. Díaz, and M. A. Valverde, “The estrogen trinity: membrane, cytosolic, and nuclear effects,” News in Physiological Sciences, vol. 16, no. 6, pp. 251–255, 2001. View at Scopus
  326. N. N. Bulayeva and C. S. Watson, “Xenoestrogen-induced ERK-1 and ERK-2 activation via multiple membrane-initiated signaling pathways,” Environmental Health Perspectives, vol. 112, no. 15, pp. 1481–1487, 2004. View at Publisher · View at Google Scholar · View at Scopus
  327. X. Li, S. Zhang, and S. Safe, “Activation of kinase pathways in MCF-7 cells by 17β-estradiol and structurally diverse estrogenic compounds,” Journal of Steroid Biochemistry and Molecular Biology, vol. 98, no. 2-3, pp. 122–132, 2006. View at Publisher · View at Google Scholar · View at Scopus
  328. S. Takayanagi, T. Tokunaga, X. Liu, H. Okada, A. Matsushima, and Y. Shimohigashi, “Endocrine disruptor bisphenol A strongly binds to human estrogen-related receptor γ (ERRγ) with high constitutive activity,” Toxicology Letters, vol. 167, no. 2, pp. 95–105, 2006. View at Publisher · View at Google Scholar · View at Scopus
  329. F. Ohtake, K. I. Takeyama, T. Matsumoto et al., “Modulation of oestrogen receptor signalling by association with the activated dioxin receptor,” Nature, vol. 423, no. 6939, pp. 545–550, 2003. View at Publisher · View at Google Scholar · View at Scopus
  330. T. Ohura, M. Morita, R. Kuruto-Niwa, T. Amagai, H. Sakakibara, and K. Shimoi, “Differential action of chlorinated polycyclic aromatic hydrocarbons on aryl hydrocarbon receptor-mediated signaling in breast cancer cells,” Environmental Toxicology, vol. 25, no. 2, pp. 180–187, 2010. View at Publisher · View at Google Scholar · View at Scopus
  331. S. M. Ho, W. Y. Tang, J. Belmonte de Frausto, and G. S. Prins, “Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4,” Cancer Research, vol. 66, no. 11, pp. 5624–5632, 2006. View at Publisher · View at Google Scholar · View at Scopus
  332. M. D. Anway, A. S. Cupp, N. Uzumcu, and M. K. Skinner, “Toxicology: epigenetic transgenerational actions of endocrine disruptors and male fertility,” Science, vol. 308, no. 5727, pp. 1466–1469, 2005. View at Publisher · View at Google Scholar · View at Scopus
  333. M. D. Anway and M. K. Skinner, “Epigenetic transgenerational actions of endocrine disruptors,” Endocrinology, vol. 147, no. 6, pp. S43–S49, 2006. View at Publisher · View at Google Scholar · View at Scopus
  334. D. Roy and J. G. Liehr, “Estrogen, DNA damage and mutations,” Mutation Research, vol. 424, no. 1-2, pp. 107–115, 1999. View at Publisher · View at Google Scholar · View at Scopus
  335. A. Kabil, E. Silva, and A. Kortenkamp, “Estrogens and genomic instability in human breast cancer cells—involvement of Src/Raf/Erk signaling in micronucleus formation by estrogenic chemicals,” Carcinogenesis, vol. 29, no. 10, pp. 1862–1868, 2008. View at Publisher · View at Google Scholar · View at Scopus
  336. A. C. Gore, “Neuroendocrine targets of endocrine disruptors,” Hormones, vol. 9, no. 1, pp. 16–27, 2010. View at Scopus
  337. J. A. Staessen, T. Nawrot, E. D. Hond et al., “Renal function, cytogenetic measurements, and sexual development in adolescents in relation to environmental pollutants: a feasibility study of biomarkers,” The Lancet, vol. 357, no. 9269, pp. 1660–1669, 2001. View at Publisher · View at Google Scholar · View at Scopus
  338. I. Ceccarelli, D. Della Seta, P. Fiorenzani, F. Farabollini, and A. M. Aloisi, “Estrogenic chemicals at puberty change ERα in the hypothalamus of male and female rats,” Neurotoxicology and Teratology, vol. 29, no. 1, pp. 108–115, 2007. View at Publisher · View at Google Scholar · View at Scopus
  339. B. C. Wadas, C. A. Hartshorn, E. R. Aurand et al., “Prenatal exposure to vinclozolin disrupts selective aspects of the gonadotrophin-releasing hormone neuronal system of the rabbit,” Journal of Neuroendocrinology, vol. 22, no. 6, pp. 518–526, 2010. View at Publisher · View at Google Scholar · View at Scopus
  340. A. C. Holloway, D. A. Anger, D. J. Crankshaw, M. Wu, and W. G. Foster, “Atrazine-induced changes in aromatase activity in estrogen sensitive target tissues,” Journal of Applied Toxicology, vol. 28, no. 3, pp. 260–270, 2008. View at Publisher · View at Google Scholar · View at Scopus
  341. M. H. A. Kester, S. Bulduk, H. van Toor et al., “Potent inhibition of estrogen sulfotransferase by hydroxylated metabolites of polyhalogenated aromatic hydrocarbons reveals alternative mechanism for estrogenic activity of endocrine disrupters,” Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 3, pp. 1142–1150, 2002. View at Publisher · View at Google Scholar · View at Scopus
  342. W. T. Collins Jr. and C. C. Capen, “Fine structural lesions and hormonal alterations in thyroid glands of perinatal rats exposed in utero and by the milk to polychlorinated biphenyls,” American Journal of Pathology, vol. 99, no. 1, pp. 125–141, 1980. View at Scopus
  343. A. P. J. M. van Birgelen, E. A. Smit, I. M. Kampen et al., “Subchronic effects of 2,3,7,8-TCDD or PCBs on thyroid hormone metabolism: use in risk assessment,” European Journal of Pharmacology, vol. 293, no. 1, pp. 77–85, 1995. View at Scopus
  344. K. R. Chauhan, P. R. S. Kodavanti, and J. D. McKinney, “Assessing the role of orthoh-substitution on polychlorinated biphenyl binding to transthyretin, a thyroxine transport protein,” Toxicology and Applied Pharmacology, vol. 162, no. 1, pp. 10–21, 2000. View at Publisher · View at Google Scholar · View at Scopus
  345. M. C. Lans, E. Klasson-Wehler, M. Willemsen, E. Meussen, S. Safe, and A. Brouwer, “Structure-dependent, competitive interaction of hydroxy-polychlorobiphenyls, -dibenzo-p-dioxins and -dibenzofurans with human transthyretin,” Chemico-Biological Interactions, vol. 88, no. 1, pp. 7–21, 1993. View at Publisher · View at Google Scholar · View at Scopus
  346. J. M. Pascussi, S. Gerbal-Chaloin, C. Duret, M. Daujat-Chavanieu, M. J. Vilarem, and P. Maurel, “The tangle of nuclear receptors that controls xenobiotic metabolism and transport: crosstalk and consequences,” Annual Review of Pharmacology and Toxicology, vol. 48, pp. 1–32, 2008. View at Publisher · View at Google Scholar · View at Scopus
  347. L. B. Moore, J. M. Maglich, D. D. McKee et al., “Pregnane X receptor (PXR), constitutive androstane receptor (CAR), and benzoate X receptor (BXR) define three pharmacologically distinct classes of nuclear receptors,” Molecular Endocrinology, vol. 16, no. 5, pp. 977–986, 2002. View at Publisher · View at Google Scholar · View at Scopus
  348. E. Castano and R. D. Flores-Saaib, “A mathematical approach for the transactivation of hERalpha,” Philosophical Transactions A, Mathematical, Physical, and Engineering Sciences, vol. 366, no. 1874, pp. 2253–2263, 2008. View at Publisher · View at Google Scholar
  349. E. L. Gregoraszczuk, A. Grochowalski, R. Chrzaszcz, and M. Wegiel, “Congener-specific accumulation of polychlorinated biphenyls in ovarian follicular wall follows repeated exposure to PCB 126 and PCB 153. Comparison of tissue levels of PCB and biological changes,” Chemosphere, vol. 50, no. 4, pp. 481–488, 2003. View at Publisher · View at Google Scholar · View at Scopus
  350. F. Endo, T. K. Monsees, H. Akaza, W. B. Schill, and S. Pflieger-Bruss, “Effects of single non-ortho, mono-ortho, and di-ortho chlorinated biphenyls on cell functions and proliferation of the human prostatic carcinoma cell line, LNCaP,” Reproductive Toxicology, vol. 17, no. 2, pp. 229–236, 2003. View at Publisher · View at Google Scholar · View at Scopus
  351. B. Eskenazi, M. Warner, A. R. Marks et al., “Serum dioxin concentrations and age at menopause,” Environmental Health Perspectives, vol. 113, no. 7, pp. 858–862, 2005. View at Publisher · View at Google Scholar · View at Scopus
  352. H. Lilienthal, A. Hack, A. Roth-Härer, S. W. Grande, and C. E. Talsness, “Effects of developmental exposure to 2,2,4,4, 5-pentabromodiphenyl ether (PBDE-99) on sex steroids, sexual development, and sexually dimorphic behavior in rats,” Environmental Health Perspectives, vol. 114, no. 2, pp. 194–201, 2006. View at Publisher · View at Google Scholar · View at Scopus
  353. L. Li, M. E. Andersen, S. Heber, and Q. Zhang, “Non-monotonic dose-response relationship in steroid hormone receptor-mediated gene expression,” Journal of Molecular Endocrinology, vol. 38, no. 5-6, pp. 569–585, 2007. View at Publisher · View at Google Scholar · View at Scopus
  354. J. G. Lemmen, R. J. Arends, P. T. van der Saag, and B. van der Burg, “In vivo imaging of activated estrogen receptors in utero by estrogens and bisphenol A,” Environmental Health Perspectives, vol. 112, no. 15, pp. 1544–1549, 2004. View at Publisher · View at Google Scholar · View at Scopus
  355. W. V. Welshons, S. C. Nagel, and F. S. vom Saal, “Large effects from small exposures. III. Endocrine mechanisms mediating effects of bisphenol A at levels of human exposure,” Endocrinology, vol. 147, no. 6, pp. S56–S69, 2006. View at Publisher · View at Google Scholar · View at Scopus
  356. I. Quesada, E. Fuentes, M. C. Viso-León, B. Soria, C. Ripoll, and A. Nadal, “Low doses of the endocrine disruptor bisphenol-A and the native hormone 17beta-estradiol rapidly activate transcription factor CREB,” FASEB Journal, vol. 16, no. 12, pp. 1671–1673, 2002. View at Scopus
  357. D. E. Walsh, P. Dockery, and C. M. Doolan, “Estrogen receptor independent rapid non-genomic effects of environmental estrogens on [Ca2+]i in human breast cancer cells,” Molecular and Cellular Endocrinology, vol. 230, no. 1-2, pp. 23–30, 2005. View at Publisher · View at Google Scholar · View at Scopus
  358. A. Zsarnovszky, H. H. Le, H. S. Wang, and S. M. Belcher, “Ontogeny of rapid estrogen-mediated extracellular signal-regulated kinase signaling in the rat cerebellar cortex: potent nongenomic agonist and endocrine disrupting activity of the xenoestrogen bisphenol A,” Endocrinology, vol. 146, no. 12, pp. 5388–5396, 2005. View at Publisher · View at Google Scholar · View at Scopus
  359. Y. B. Wetherill, C. E. Petre, K. R. Monk, A. Puga, and K. E. Knudsen, “The xenoestrogen bisphenol A induces inappropriate androgen receptor activation and mitogenesis in prostatic adenocarcinoma cells,” Molecular Cancer Therapeutics, vol. 1, no. 7, pp. 515–524, 2002. View at Scopus
  360. A. J. M. Andrade, S. W. Grande, C. E. Talsness, K. Grote, and I. Chahoud, “A dose-response study following in utero and lactational exposure to di-(2-ethylhexyl)-phthalate (DEHP): non-monotonic dose-response and low dose effects on rat brain aromatase activity,” Toxicology, vol. 227, no. 3, pp. 185–192, 2006. View at Publisher · View at Google Scholar · View at Scopus
  361. J. E. Bodwell, L. A. Kingsley, and J. W. Hamilton, “Arsenic at very low concentrations alters glucocorticoid receptor (GR)-mediated gene activation but not GR-mediated gene repression: complex dose-response effects are closely correlated with levels of activated GR and require a functional GR DNA binding domain,” Chemical Research in Toxicology, vol. 17, no. 8, pp. 1064–1076, 2004. View at Publisher · View at Google Scholar · View at Scopus
  362. National Academy of Science, Hormonally Active Agents in the Environment, National Academy press, Washington, DC, USA, 1999.
  363. W. Dhooge, E. Den Hond, G. Koppen et al., “Internal exposure to pollutants and sex hormone levels in Flemish male adolescents in a cross-sectional study: associations and dose—response relationships,” Journal of Exposure Science and Environmental Epidemiology, vol. 21, no. 1, pp. 106–113, 2011. View at Publisher · View at Google Scholar · View at Scopus
  364. E. Den Hond, W. Dhooge, L. Bruckers et al., “Internal exposure to pollutants and sexual maturation in Flemish adolescents,” Journal of Exposure Science and Environmental Epidemiology, vol. 21, no. 3, pp. 224–233, 2011. View at Publisher · View at Google Scholar · View at Scopus
  365. I. Colón, D. Caro, C. J. Bourdony, and O. Rosario, “Identification of phthalate esters in the serum of young Puerto Rican girls with premature breast development,” Environmental Health Perspectives, vol. 108, no. 9, pp. 895–900, 2000. View at Scopus
  366. A. D. Correia, S. Freitas, M. Scholze et al., “Mixtures of estrogenic chemicals enhance vitellogenic response in sea bass,” Environmental Health Perspectives, vol. 115, pp. 115–121, 2007. View at Scopus
  367. H. Zhang, F. X. Kong, Y. Yu, X. L. Shi, M. Zhang, and H. E. Tian, “Assessing the combination effects of environmental estrogens in fish,” Ecotoxicology, vol. 19, no. 8, pp. 1476–1486, 2010. View at Publisher · View at Google Scholar · View at Scopus
  368. M. Y. Kochukov, Y. J. Jeng, and C. S. Watson, “Alkylphenol xenoestrogens with varying carbon chain lengths differentially and potently activate signaling and functional responses in GH3/B6/F10 somatomammotropes,” Environmental Health Perspectives, vol. 117, no. 5, pp. 723–730, 2009. View at Publisher · View at Google Scholar · View at Scopus
  369. Y. J. Jeng and C. S. Watson, “Combinations of physiologic estrogens with xenoestrogens alter ERK phosphorylation profiles in rat pituitary cells,” Environmental Health Perspectives, vol. 119, no. 1, pp. 104–113, 2011. View at Publisher · View at Google Scholar · View at Scopus
  370. A. Kuhl and M. Brouwer, “Antiestrogens inhibit xenoestrogen-induced brain aromatase activity but do not prevent xenoestrogen-induced feminization in Japanese Medaka (Oryzias latipes),” Environmental Health Perspectives, vol. 114, no. 4, pp. 500–506, 2006. View at Publisher · View at Google Scholar · View at Scopus
  371. “American Chemical Society,” (statement no 3, 2009, http://portal.acs.org/portal/acs/corg/content?_nfpb=true&_pageLabel=PP_SUPERARTICLE&node_id=2226&use_sec=false&sec_url_var=region1&_uuid=90d93c48-57e0-4088-8fcd-d428a78a5f38).