About this Journal Submit a Manuscript Table of Contents
Journal of Nutrition and Metabolism
Volume 2013 (2013), Article ID 486186, 19 pages
http://dx.doi.org/10.1155/2013/486186
Review Article

Vitamin B12, Folate, Homocysteine, and Bone Health in Adults and Elderly People: A Systematic Review with Meta-Analyses

1Division of Human Nutrition, Wageningen University, P.O. Box 8129, 6700 EV Wageningen, The Netherlands
2Department of Human Nutrition, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159c, 02 776 Warsaw, Poland
3Northern Ireland Centre for Food and Health (NICHE), University of Ulster, Coleraine BT52 1SA, UK

Received 4 October 2012; Accepted 23 November 2012

Academic Editor: Christel Lamberg-Allardt

Copyright © 2013 J. P. van Wijngaarden et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Elevated homocysteine levels and low vitamin B12 and folate levels have been associated with deteriorated bone health. This systematic literature review with dose-response meta-analyses summarizes the available scientific evidence on associations of vitamin B12, folate, and homocysteine status with fractures and bone mineral density (BMD). Twenty-seven eligible cross-sectional ( ) and prospective ( ) observational studies and one RCT were identified. Meta-analysis on four prospective studies including 7475 people showed a modest decrease in fracture risk of 4% per 50 pmol/L increase in vitamin B12 levels, which was borderline significant (RR = 0.96, 95% CI = 0.92 to 1.00). Meta-analysis of eight studies including 11511 people showed an increased fracture risk of 4% per μmol/L increase in homocysteine concentration (RR = 1.04, 95% CI = 1.02 to 1.07). We could not draw a conclusion regarding folate levels and fracture risk, as too few studies investigated this association. Meta-analyses regarding vitamin B12, folate and homocysteine levels, and BMD were possible in female populations only and showed no associations. Results from studies regarding BMD that could not be included in the meta-analyses were not univocal.

1. Introduction

Osteoporosis is a chronic, multifactorial disorder which is characterized by low bone mass and microarchitectural deterioration of bone tissue [1]. Its major consequence is fractures. Especially hip fractures are frequently associated with institutionalization and increased mortality, and thus with an increased social and economic burden. This burden is expected to increase substantially in Europe in the coming decades due to a rise in life expectancy [2].

Elevated homocysteine concentrations and low vitamin B12 and folate status have been associated in several studies with lower bone mineral density (BMD) and higher fracture risk in elderly [311].

An elevated plasma homocysteine level (>15 μmol/L) is prevalent in 30–50% of people older than 60 years [1214]. The cause is multifactorial; a combination of environmental and genetic factors, nutrition, lifestyle, and hormonal factors [15]. Vitamin B12 and folate are major determinants of homocysteine metabolism [16, 17] and supplementation with vitamin B12 and folic acid has been shown to be effective in normalizing homocysteine levels [18, 19]. Reversing elevated homocysteine levels through folic acid and vitamin B12 supplementation could theoretically prevent the problem of impaired bone health and osteoporosis. However, at present, no consensus is reached on the magnitude of the association between vitamin B12, folate, homocysteine, and bone health nor on the possible effect of vitamin B12 and folate supplementation on bone health.

Up until now one systematic review including a meta-analysis summarized the evidence on homocysteine and fracture risk, showing that higher homocysteine levels significantly increase the risk of fracture [20]. No meta-analyses are known on the topic of folate and vitamin B12 in relation to bone health. The purpose of this review is to provide a systematic overview, where possible including pooled estimates of the dose-response association, of the scientific evidence available from randomized controlled trials (RCTs), prospective cohort, and cross-sectional studies addressing vitamin B12, folate, and homocysteine levels in association with bone health, that is, fracture risk and BMD, in adults and elderly people.

2. Methods

This systematic review with dose-response meta-analyses was conducted within the scope of the EURRECA (European Micronutrient Recommendations Aligned) Network of Excellence (http://www.eurreca.org/) [21]. We followed a standardized methodology which is described in short below.

2.1. Search Strategy and Selection of Articles

We conducted systematic literature searches for (1) vitamin B12, (2) folate, and (3) homocysteine. The electronic databases MEDLINE, EMBASE, and Cochrane Library Central were searched, using search terms in “MeSH” terms and “title” and “abstract” on study designs in humans, vitamin B12, folate, homocysteine, and intake or status. The full Medline search strategy is available online, (see Appendix 1 in Supplementary Material at http://dx.doi.org/10.1155/2013/486186).

To be able to use the same search to identify publications on other health related outcomes both in adults and elderly and in younger population groups, no terms were added to limit the search to health outcome or study population. Moreover, by using a broad search we expected a more complete retrieval of relevant publications. In this review only the results on vitamin B12, folate, and homocysteine status (i.e., biomarkers measured in serum or plasma) in relation to bone health indicators (fracture risk and BMD) are presented. In addition to the search, reference lists of 10 review articles were checked to identify potentially relevant references that were not identified with the multidatabase search. The search was not limited by language. This review contains studies up to July 2012.

We selected articles in two steps. The first selection step included screening for title and abstract by three independent investigators (J. P. van Wijngaarden, E. L. Doets, SB). In the second selection step, full texts of the selected abstracts were evaluated on basis of predefined inclusion criteria by four investigators (J. P. van Wijngaarden, E. L. Doets, A. Szczecińska, MP).

For the purpose of alignment and quality control 10% of the references in each selection step was screened and selected in duplicate by two investigators independently. Results were compared and discrepancies were resolved by unanimous consensus among all investigators.

Studies were eligible for inclusion if they were conducted in apparently healthy human subjects aged ≥18 y. Furthermore, studies had to report fracture incidence, fracture risk, or bone mineral density (BMD) as a health outcome and had to report baseline data on the outcome measure.

Observational studies were included if they (1) had a prospective cohort, nested case-control, or cross-sectional design, and (2) addressed serum/plasma concentration of markers indicating vitamin B12 status (serum/plasma vitamin B12, methylmalonic acid (MMA), holotranscobalamin (holoTC)), folate status (serum/plasma folate or erythrocyte folate), or homocysteine status (serum/plasma homocysteine). Intervention studies were included if they (1) had a randomized controlled trial design, (2) studied the effects of vitamin B12 or folic acid supplements, fortified foods or micronutrient intake from natural food sources and included a placebo or untreated comparison group, and (3) had a minimum intervention duration of six months.

2.2. Data Extraction and Statistical Analysis

We extracted data for each of the identified studies on population characteristics, study design, assessment of vitamin B12, folate and homocysteine status, and fracture risk or bone mineral density.

Opportunities for meta-analysis were evaluated based on comparability of health outcome and status marker. If less than three comparable studies were available, results were qualitatively described. If three or more comparable studies were available, the results of these individual studies were expressed in a standardized format to allow comparison in the form of a continuous dose-response meta-analysis that pools the regression coefficient ( ) (SE) from multiple adjusted models. We chose to express association measures for serum/plasma vitamin B12 per 50 pmol/L. When s were not reported in the original article, we transformed Relative Risk (RR), Hazard Ratio (HR), or Odds Ratio (OR) to s, using a standardized method [22]. The transformations to obtain s and SEs and statistical analyses were performed using R statistics version 2.9.2 (http://www.R-project.org/), with statistical significance defined as . HR and OR were considered as RR because the outcome was relatively rare. If articles reported insufficient data (missing data, inconsistencies, or any other uncertainties), we contacted corresponding authors for additional information.

We calculated summary estimates of comparable studies using random effects meta-analysis. Applying the methods of DerSimonian and Laird, the between study variance was estimated which was used to modify the weights for calculating the summary estimate [23]. Residual heterogeneity between studies was evaluated using -statistic and -statistic.

In total, from 3 searches we identified 11837 potentially relevant articles, of which 9835 articles were excluded based on title and abstract. Of the remaining 2002 articles, 1961 articles were excluded based on full texts, leaving 41 articles. As the searches were partly overlapping and some articles addressed more than one association this resulted in 20 unique articles, 19 observational and 1 intervention. A search update on July 2nd, 2012 resulted in an additional 8 observational studies, which makes a total of 28 included articles. All addressed the association between vitamin B12, folate or homocysteine status, and fracture risk or BMD. The flow diagram of the process of screening and selection is shown in Figure 1.

486186.fig.001
Figure 1: Flow diagram of screening and selection.

3. Results

3.1. Fractures
3.1.1. Vitamin B12

Four longitudinal observational studies [3, 2426], including 7475 elderly people with 3 to 16 years of follow-up and a total of 458 cases addressed the association between serum/plasma vitamin B12 and fracture (Table 1). Pooled analysis of the association between 50 pmol/L increase in plasma/serum B12 and change in fracture risk showed an inverse association ( , 95%   to 1.00) with no heterogeneity between studies ( , ) (Figure 2). This indicates that a vitamin B12 increase of 50 pmol/L tends to decrease the risk of fracture with 4%.

tab1
Table 1: Studies regarding the association between vitamin B12 and bone health.
486186.fig.002
Figure 2: Forest plot of the association between vitamin B12 (50 pmol/L) and risk of fracture: Meta-Analysis of 4 observational studies.

3.1.2. Folate

Three longitudinal observational studies examined the association between plasma folate and fractures [2426] (Table 2). One study showed that women, but not men, with plasma folate in the lowest quartile had a higher fracture risk (HR 2.40, 95% CI 1.50 to 3.84) compared to the highest (reference) quartile ( for trend <0.001) [24]. Ravaglia et al. (2005) [26] showed a significant association between low folate status and fracture risk when folate was analyzed as a dichotomous variable (lowest quartile of folate status versus other 3 quartiles), but when analyzed as a continuous variable, no significant association was observed [26]. One study did not observe an association [25].

tab2
Table 2: Studies regarding the association between folate and bone health.

3.1.3. Homocysteine

Eleven longitudinal observational studies examined the association between homocysteine status and fracture incidence [35, 2529] (Table 3). A meta-analysis of eight studies, including 11511 elderly people with 3 to 12.6 years of follow-up and 1353 cases, showed a significantly increased fracture risk with increasing plasma homocysteine (μmol/L) (summary estimate RR 1.04, (95% CI: 1.02 to 1.07). Heterogeneity between studies was large ( , ) (Figure 3). When hip fractures (3 studies; [24, 28, 29]) and total fractures (5 studies; [3, 26, 27, 30, 31]) were analyzed separately, the relation remained significant, 1.06 (95% CI: 1.03 to 1.08, , ) and 1.04 (95% CI: 1.00 to 1.08, , ).

tab3
Table 3: Studies regarding the association between homocysteine and bone health.
486186.fig.003
Figure 3: Forest plot of the association between homocysteine and risk of fracture: Meta-Analysis of 8 observational studies.

Three studies that were not included in the meta-analysis also showed significant associations between homocysteine levels and fracture risk. These studies were not included because the necessary data could not be retrieved from the articles; either homocysteine levels were log-transformed [4, 5] or data was not shown for population homocysteine status [25]. Regardless the type of analysis, women and men in the highest homocysteine quartile had a 1.7 to 3.8 higher RR or HR than those in the lowest or the lowest three quartiles [4, 5, 25].

3.2. Bone Mineral Density

In the studies included in this review BMD was measured at various sites in the body (e.g., lumbar spine, femoral neck, radius, hip, and total body). As BMD differs per site in the body, we pooled results per biomarker (serum/plasma vitamin B12, folate, and homocysteine) and per site for the three sites generally measured (FN, LS, or total hip), thus resulting in 9 meta-analyses. Betas of the individual studies are shown in Tables 1, 2, and 3. The studies included in the meta-analyses took only women into account. Only five studies regarding BMD included a male population [6, 7, 10, 35, 38], and these studies were not comparable quantitatively because differences in the presentation of results or differences in the measured BMD sites.

3.2.1. Vitamin B12

Pooled analysis showed no association between serum/plasma vitamin B12 levels and BMD in women; FN: , 95% CI: −0.13 to 0.14, , [9, 37, 40]; LS: , 95% CI: −7.98 to 3.49, , [9, 37, 39, 40]; total hip , 95% CI: −10.38 to 5.92, , and [33, 37, 39, 40]. The studies that could not be included in the meta-analyses showed diverse results; in six out of eight studies low serum/plasma vitamin B12 was significantly associated with low BMD at at least one site [6, 7, 11, 32, 35, 38]. Two studies did not observe an association between vitamin B12 status and BMD [34, 36]. Morris et al. addressed MMA levels as well as a marker for vitamin B12 status and observed a lower BMD with higher serum MMA concentrations [7].

3.2.2. Folate

Pooled analysis showed no association between serum/plasma folate and BMD in women; FN: , 95% CI: −0.03 to 0.03, , [9, 37, 40]; LS: , 95% CI: 0.00 to 0.01, , [9, 37, 39, 40]; total hip: , 95% CI: 0.00 to 0.01, , [10, 33, 37, 39, 40].

From the studies that could not be compared in a meta-analysis, three studies showed significant associations between folate status and BMD or change in BMD over time [8, 10, 34]. Five studies did not observe an association between folate status and BMD [7, 32, 36, 38, 41].

3.2.3. Homocysteine

Pooled analyses showed no association between serum/plasma homocysteine levels and BMD in women; FN: , 95% CI: −0.04 to 0.02, , [9, 27, 37, 40]; LS: , 95% CI: −0.08 to 0.05, , [9, 27, 37, 39, 40]; total hip: , 95% CI: −0.08 to 0.02, , [10, 27, 33, 37, 39, 40]. The studies that could not be pooled showed diverse results. In five studies a high homocysteine level was significantly associated with low BMD or change in BMD over time at at least one site [7, 29, 31, 32, 41]. Three studies did not observe a significant association between homocysteine status and BMD or change in BMD [8, 34, 36].

3.3. Intervention Studies

Up until now, only one RCT ( ) which met our inclusion criteria studied the efficacy of B-vitamin supplementation on BMD [42]. This study shows some evidence that BMD may be increased with high doses of B-vitamin supplementation in people with hyperhomocysteinemia (tHcy > 15 μmol/L). However, this outcome was only found in a subanalysis of 8 hyperhomocysteinemic subjects [42].

4. Discussion

Our meta-analyses showed a significant association of homocysteine levels with fracture risk and a weak though significant inverse association of vitamin B12 levels with fracture risk. We could not draw a conclusion regarding folate levels and fracture risk, as too few studies investigated this association. Meta-analyses regarding vitamin B12, folate and homocysteine levels and BMD in women found no associations. Results from studies regarding BMD that could not be included in the meta-analyses are not univocal.

To our knowledge this systematic review with meta-analyses is the most extensive systematic review on the association of vitamin B12, folate and homocysteine with bone health until now. Previous non-systematic literature reviews on the association between folate, vitamin B12, and homocysteine with bone health reported similar results, that is, conflicting evidence with suggestions towards the association of homocysteine levels with fracture [4345]. These reviews did not report a systematic literature search strategy and did not provide a quantitative cumulative result. In our review the most recent published articles have been taken into account. The search strategy we used was systematic and extensive, and we used well-defined in- and exclusion criteria.

One recent systematic review included a meta-analysis on the association between tHcy and fractures [20]. This meta-analysis is different in design than ours, as it is not a dose-response meta-analysis. To overcome the variation in cut-off levels for low vitamin B12 and folate status and high homocysteine status, and to allow comparison and subsequent combination of individual studies in the performed meta-analyses, we expressed results of individual studies in a standardized format. We assumed a linear, continuous dose-response association between markers of vitamin B12 and folate with fracture rather than a threshold effect. This assumption is generally used in meta-analyses. Furthermore, in some of the key articles addressing the association of homocysteine levels with fractures this association is present [4, 5].

A common concern in meta-analyses is heterogeneity between studies. In our meta-analyses we experienced various levels of statistical heterogeneity (no heterogeneity to large heterogeneity). The heterogeneity may be explained by the differences in mean age of the study populations (41–78 years), differences in mean status of vitamin B12 (190–549 pmol/L), folate (5.2–24.9 nmol/L) and homocysteine (9.3–16.5 μmol/L), differences in sex distribution of the study populations, duration of follow-up (3–16 years), and level of adjustment for confounders. Although most included studies adjusted for a wide range of confounders for fracture risk or BMD, residual confounding by other unmeasured or inadequately measured factors cannot be ruled out. For example, low vitamin D status is a risk factor for fracture [46]. From the studies included in our meta-analyses for fracture three out of nine adjusted for vitamin D status [24, 25, 27]. Outcomes do not seem to differ between studies that corrected for vitamin D status and studies that did not. Homocysteine levels are increased with renal dysfunction, often measured by serum or urine creatinine levels. Five out of eight studies in the meta-analysis regarding homocysteine and fracture risk corrected for creatinine levels [3, 24, 26, 27, 29], and outcomes did not seem to differ.

As almost all studies were performed in countries without mandatory folate fortification or were performed before the fortification era in the USA and Australia, we do not consider folate fortification as a source of heterogeneity in our analyses.

The majority of studies included were longitudinal and cross-sectional observational studies. We could only include one intervention study, which had a very small study population ( ). One intervention study which found a beneficial effect of vitamin B12 and folic acid supplementation on fracture risk could not be included in our systematic review, because this study investigated a population of hemiplegic patients following stroke [47]. The generalizability of these findings is confined to a highly selective patient population with a high percentage of vitamin D deficiency and a high fracture risk. As evidence from intervention studies is lacking, currently no causal effect between vitamin B12, folate and homocysteine levels and bone health can be established. Consequently, it is yet unknown whether extra vitamin B12 and folate intake through supplementation could reverse the observed negative effects of vitamin B12 and folate deficiency and elevated homocysteine levels. Further evidence from an intervention study is expected soon, as a large intervention study on the effect of vitamin B12 and folic acid supplementation on fracture risk, BMD, and bone turnover markers is currently carried out with results expected in 2013 [48].

As the quality of included studies determines the quality of the review and meta-analysis, we assessed the overall risk of bias of each individual study using standardized procedures largely based on guidance from the Cochrane Collaboration [49], resulting in one of the following judgments: low, moderate, or high risk of bias. Twenty out of the 28 included studies were evaluated as having moderate ( ) or high risk ( ) of bias. These studies did take one or more of the predefined confounders into account, that is, age, sex, smoking, physical activity, and body weight, or the study was funded or cofunded by a commercial organization. Due to the limited number of studies included in the meta-analyses, we were not able to study the effect of the overall risk of bias, nor of its single components on the pooled effect measures. There seems to be no difference in the outcomes of studies with low risk of bias compared to studies with moderate or high risk of bias, and we therefore assume that the quality of the included studies had no effect on the outcome of this review.

The intake of folate and vitamin B12 are a determinant of folate, vitamin B12, and homocysteine status. To deal with potential malabsorption of vitamin B12 [50] and reduced bioavailability of folate [51], the use of biomarkers for vitamin B12 and folate status is preferred over measures of intake when studying associations with bone health in elderly people.

In studies addressing folate status, serum or plasma folate was measured, which is considered as an appropriate marker for folate status in epidemiological studies [52]. Homocysteine is a nonspecific marker for both folate and vitamin B12 status [53], which makes it a relevant biomarker in this review. Regarding the metabolic interactions between vitamin B12, folate, and homocysteine combined with the variety in data presented in the studies, we were not able to investigate the possibility that a low vitamin B12 or folate status in combination with a high homocysteine level might result in a higher fracture risk in comparison to a low vitamin B12 or folate status or homocysteine level alone. In most studies regarding vitamin B12 status, status was assessed with serum or plasma vitamin B12. Other, more sensitive markers for vitamin B12 deficiency, like MMA and HoloTC [54], were addressed only in a few studies. We could therefore not draw conclusions about the association between these biomarkers and outcomes on bone health.

There are several suggested mechanisms for the association between vitamin B12, folate, homocysteine, and bone health. Homocysteine may interfere with collagen cross-linking. Cross-links are important for the stability and strength of the collagen network. Interference in cross-link formation would cause an altered bone matrix, resulting in more fragile bones [55]. As collagen cross-links do not alter BMD, this may explain why a more convincing result is found regarding fractures than BMD, as suggested for example by Van Meurs et al. [5]. Vitamin B12 deficiency has been associated with impaired functional maturation of osteoblasts [56]. Some in vitro studies support the hypothesis of a possible favorable effect of vitamin B12 supplementation, although results are equivocal. Vitamin B12 has been shown to stimulate osteoblast proliferation and alkaline phosphatase activity [57] but Herrmann et al. were not able to show any significant and consistent effect of vitamin B12 or folic acid on osteoblast activity [58]. Recent publications show evidence of osteoclast stimulation in the presence of high homocysteine and low vitamin B12 concentrations [5961]. Vitamin B12 and folate are not the only B-vitamins involved in the homocysteine metabolism. Various micronutrients, such as vitamin B2 (riboflavin), vitamin B6 (pyridoxine), and choline also affect homocysteine levels [16, 17, 62], and may consequently affect bone health. Given that vitamin B12 and folate are the main factors influencing homocysteine levels, and therefore the primary focus in a homocysteine lowering intervention [63], our review focused on vitamin B12, folate, and homocysteine.

Considerations for Future Research and Conclusions

The mechanisms involved in the association between biomarkers of B-vitamins and bone health are still unclear and therefore more fundamental research is required to establish the potential mechanisms. Subsequently, both observational and intervention studies should preferably not focus on just one biomarker in relation to the homocysteine metabolism, but take a biomarker profile into account, including serum/plasma vitamin B12, MMA, HoloTC, folate, and homocysteine levels. Evidence is needed from well-designed, large intervention studies to establish a causal relationship between markers of B-vitamins and bone health.

This systematic review with meta-analyses shows that elevated homocysteine levels are associated with increased fracture risk. Vitamin B12 status may be associated with fracture risk and evidence for an association between folate status and fracture risk is scarce. Vitamin B12, folate, and homocysteine levels are probably not associated with BMD, but results are not univocal.

Acknowledgments

The work reported herein has been carried out within the EURRECA Network of Excellence (http://www.eurreca.org/) which is financially supported by the Commission of the European Communities, specific Research, Technology and Development (RTD) Programme Quality of Life and Management of Living Resources, within the Sixth Framework Programme, Contract no. 036196. This review does not necessarily reflect the Commission’s views or its future policy in this area. The original conception of the systematic review was undertaken by the EURRECA Network and coordinated by partners based at Wageningen University (WU), the Netherlands and the University of East Anglia (UEA), United Kingdom. Susan Fairweather-Tait (UEA), C. P. G. M. de Groot (WU), P. van’t Veer (WU), Kate Ashton (UEA), Amélie Casgrain (UEA), A. E. J. M. Cavelaars (WU), Rachel Collings (UEA), R. A. M. Dhonukshe-Rutten (WU), E. L. Doets (WU), Linda Harvey (UEA), and Lee Hooper (UEA) designed and developed the review protocol and search strategy. The authors thank Silvia Bell, Iris Iglesias (University of Zaragosa, Spain), Maria Plada (University of Athens, Greece), Nathalie van Borrendam, and Margreet Smit (Wageningen University, the Netherlands) for assistance in article selection and data extraction. Furthermore The authors thank Dr. RAM Dhonukshe-Rutten, Department of Human nutrition, Wageningen University, The Netherlands, Dr. A. Cagnacci, Department of Obstetrics, Gynecology and Pediatrics, Obstetrics and Gynecology Unit, Policlinico of Modena, Modena, Italy, R. R. McLean, Dsc, MPH, Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA, Harvard Medical School, Boston, MA, USA, and Dr. E. Sarnay-Rendu, INSERM, France, for providing the authors with additional data regarding their articles.

References

  1. “Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis,” The American Journal of Medicine, vol. 94, no. 6, pp. 646–650, 1993.
  2. J. A. Kanis and O. Johnell, “Requirements for DXA for the management of osteoporosis in Europe,” Osteoporosis International, vol. 16, no. 3, pp. 229–238, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. R. A. M. Dhonukshe-Rutten, S. M. F. Pluijm, L. C. P. G. M. De Groot, P. Lips, J. H. Smit, and W. A. Van Staveren, “Homocysteine and vitamin B12 status relate to bone turnover markers, broadband ultrasound attenuation, and fractures in healthy elderly people,” Journal of Bone and Mineral Research, vol. 20, no. 6, pp. 921–929, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. R. R. McLean, P. F. Jacques, J. Selhub et al., “Homocysteine as a predictive factor for hip fracture in older persons,” The New England Journal of Medicine, vol. 350, no. 20, pp. 2042–2049, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. J. B. van Meurs, R. A. Dhonukshe-Rutten, S. M. Pluijm, et al., “Homocysteine levels and the risk of osteoporotic fracture,” The New England Journal of Medicine, vol. 350, no. 20, pp. 2033–2041, 2004.
  6. K. L. Tucker, M. T. Hannan, N. Qiao et al., “Low plasma vitamin B12 is associated with lower BMD: The Framingham osteoporosis study,” Journal of Bone and Mineral Research, vol. 20, no. 1, pp. 152–158, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. M. S. Morris, P. F. Jacques, and J. Selhub, “Relation between homocysteine and B-vitamin status indicators and bone mineral density in older Americans,” Bone, vol. 37, no. 2, pp. 234–242, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Cagnacci, F. Baldassari, G. Rivolta, S. Arangino, and A. Volpe, “Relation of homocysteine, folate, and vitamin B12 to bone mineral density of postmenopausal women,” Bone, vol. 33, no. 6, pp. 956–959, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Golbahar, A. Hamidi, M. A. Aminzadeh, and G. R. Omrani, “Association of plasma folate, plasma total homocysteine, but not methylenetetrahydrofolate reductase C667T polymorphism, with bone mineral density in postmenopausal Iranian women: a cross-sectional study,” Bone, vol. 35, no. 3, pp. 760–765, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. C. G. Gjesdal, S. E. Vollset, P. M. Ueland et al., “Plasma total homocysteine level and bone mineral density: The Hordaland Homocysteine Study,” Archives of Internal Medicine, vol. 166, no. 1, pp. 88–94, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. K. L. Stone, D. C. Bauer, D. Sellmeyer, and S. R. Cummings, “Low serum vitamin B-12 levels are associated with increased hip bone loss in older women: a prospective study,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 3, pp. 1217–1221, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. A. de Bree, N. M. van der Put, L. I. Mennen, et al., “Prevalences of hyperhomocysteinemia, unfavorable cholesterol profile and hypertension in European populations,” European Journal of Clinical Nutrition, vol. 59, no. 4, pp. 480–488, 2005.
  13. W. Wouters-Wesseling, A. E. J. Wouters, C. N. Kleijer, J. G. Bindels, C. P. G. M. de Groot, and W. A. van Staveren, “Study of the effect of a liquid nutrition supplement on the nutritional status of psycho-geriatric nursing home patients,” European Journal of Clinical Nutrition, vol. 56, no. 3, pp. 245–251, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. S. J. P. M. Eussen, L. C. P. G. M. De Groot, R. Clarke et al., “Oral cyanocobalamin supplementation in older people with vitamin B 12 deficiency: a dose-finding trial,” Archives of Internal Medicine, vol. 165, no. 10, pp. 1167–1172, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Green, “Indicators for assessing folate and vitamin B-12 status and for monitoring the efficacy of intervention strategies,” American Journal of Clinical Nutrition, vol. 94, no. 2, pp. 666S–672S, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Selhub, P. F. Jacques, P. W. F. Wilson, D. Rush, and I. H. Rosenberg, “Vitamin status and intake as primary determinants of homocysteinemia in an elderly population,” Journal of the American Medical Association, vol. 270, no. 22, pp. 2693–2698, 1993. View at Publisher · View at Google Scholar · View at Scopus
  17. P. F. Jacques, A. G. Bostom, P. W. F. Wilson, S. Rich, I. H. Rosenberg, and J. Selhub, “Determinants of plasma total homocysteine concentration in the Framingham Offspring cohort,” American Journal of Clinical Nutrition, vol. 73, no. 3, pp. 613–621, 2001. View at Scopus
  18. R. Clarke, “Lowering blood homocysteine with folic acid based supplements: meta-analysis of randomised trials,” British Medical Journal, vol. 316, no. 7135, pp. 894–898, 1998. View at Scopus
  19. A. M. Kuzminski, E. J. Del Giacco, R. H. Allen, S. P. Stabler, and J. Lindenbaum, “Effective treatment of cobalamin deficiency with oral cobalamin,” Blood, vol. 92, no. 4, pp. 1191–1198, 1998. View at Scopus
  20. J. Yang, X. Hu, Q. Zhang, H. Cao, J. Wang, and B. Liu, “Homocysteine level and risk of fracture: a meta-analysis and systematic review,” Bone, vol. 51, no. 3, pp. 376–382, 2012.
  21. C. Matthys, P. van't Veer, L. de Groot, et al., “EURRECAs approach for estimating micronutrient requirements,” International Journal for Vitamin and Nutrition Research, vol. 81, no. 4, pp. 256–263, 2011.
  22. O. W. Souverein, C. Dullemeijer, P. van't Veer, and H. van der Voet, “Transformations of summary statistics as input in meta-analysis for linear dose-response models on a logarithmic scale: a methodology developed within EURRECA,” BMC Medical Research Methodology, vol. 12, no. 1, article 57, 2012.
  23. R. DerSimonian and N. Laird, “Meta-analysis in clinical trials,” Controlled Clinical Trials, vol. 7, no. 3, pp. 177–188, 1986. View at Scopus
  24. C. G. Gjesdal, S. E. Vollset, P. M. Ueland, H. Refsum, H. E. Meyer, and G. S. Tell, “Plasma homocysteine, folate, and vitamin B12 and the risk of hip fracture: the hordaland homocysteine study,” Journal of Bone and Mineral Research, vol. 22, no. 5, pp. 747–756, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. R. R. McLean, P. F. Jacques, J. Selhub et al., “Plasma B vitamins, homocysteine, and their relation with bone loss and hip fracture in elderly men and women,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 6, pp. 2206–2212, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. G. Ravaglia, P. Forti, F. Maioli et al., “Folate, but not homocysteine, predicts the risk of fracture in elderly persons,” Journals of Gerontology A, vol. 60, no. 11, pp. 1458–1462, 2005. View at Scopus
  27. M. A. Périer, E. Gineyts, F. Munoz, E. Sornay-Rendu, and P. D. Delmas, “Homocysteine and fracture risk in postmenopausal women: The OFELY study,” Osteoporosis International, vol. 18, no. 10, pp. 1329–1336, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. M. S. Leboff, R. Narweker, A. Lacroix et al., “Homocysteine levels and risk of hip Fracture in postmenopausal women,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 4, pp. 1207–1213, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. P. Gerdhem, K. K. Ivaska, A. Isaksson et al., “Associations between homocysteine, bone turnover, BMD, mortality, and fracture risk in elderly women,” Journal of Bone and Mineral Research, vol. 22, no. 1, pp. 127–134, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. A. W. Enneman, N. van der Velde, R. de Jonge, et al., “The association between plasma homocysteine levels, methylation capacity and incident osteoporotic fractures,” Bone, vol. 50, no. 6, pp. 1401–1405, 2012.
  31. K. Zhu, J. Beilby, I. M. Dick, A. Devine, M. Soós, and R. L. Prince, “The effects of homocysteine and MTHFR genotype on hip bone loss and fracture risk in elderly women,” Osteoporosis International, vol. 20, no. 7, pp. 1183–1191, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. N. Bozkurt, M. Erdem, E. YIlmaz et al., “The relationship of homocyteine, B12 and folic acid with the bone mineral density of the femur and lumbar spine in Turkish postmenopausal women,” Archives of Gynecology and Obstetrics, vol. 280, no. 3, pp. 381–387, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. P. Bucciarelli, G. Martini, I. Martinelli et al., “The relationship between plasma homocysteine levels and bone mineral density in post-menopausal women,” European Journal of Internal Medicine, vol. 21, no. 4, pp. 301–305, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Cagnacci, B. Bagni, A. Zini, M. Cannoletta, M. Generali, and A. Volpe, “Relation of folates, vitamin B12 and homocysteine to vertebral bone mineral density change in postmenopausal women: a five-year longitudinal evaluation,” Bone, vol. 42, no. 2, pp. 314–320, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. R. A. M. Dhonukshe-Rutten, M. Lips, N. De Jong et al., “Vitamin B-12 status is associated with bone mineral content and bone mineral density in frail elderly women but not in men,” Journal of Nutrition, vol. 133, no. 3, pp. 801–807, 2003. View at Scopus
  36. B. Haliloglu, F. B. Aksungar, E. Ilter et al., “Relationship between bone mineral density, bone turnover markers and homocysteine, folate and vitamin B12 levels in postmenopausal women,” Archives of Gynecology and Obstetrics, vol. 281, no. 4, pp. 663–668, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. Z. Krivosikova, M. Krajčovičová-Kudláčková, V. Spustová, et al., “The association between high plasma homocysteine levels and lower bone mineral density in Slovak women: the impact of vegetarian diet,” European Journal of Nutrition, vol. 49, no. 3, pp. 147–153, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. I. Naharci, E. Bozoglu, N. Karadurmus et al., “Vitamin B12 and folic acid levels as therapeutic target in preserving bone mineral density (BMD) of older men,” Archives of Gerontology and Geriatrics, vol. 54, no. 3, pp. 469–472, 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. Z. Ouzzif, K. Oumghar, K. Sbai, A. Mounach, E. M. Derouiche, and A. El Maghraoui, “Relation of plasma total homocysteine, folate and vitamin B12 levels to bone mineral density in Moroccan healthy postmenopausal women,” Rheumatology International, vol. 32, no. 1, pp. 123–128, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. I. Rumbak, V. Ziic, L. Sokolic, S. Cvijetic, R. Kajfe, and I. Colic Baric, “Bone mineral density is not associated with homocysteine level, folate and vitamin B12 status,” Archives of Gynecology and Obstetrics, vol. 285, no. 4, pp. 991–1000, 2012.
  41. M. Baines, M. B. Kredan, A. Davison et al., “The association between cysteine, bone turnover, and low bone mass,” Calcified Tissue International, vol. 81, no. 6, pp. 450–454, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Herrmann, N. Umanskaya, L. Traber et al., “The effect of B-vitamins on biochemical bone turnover markers and bone mineral density in osteoporotic patients: a 1-year double blind placebo controlled trial,” Clinical Chemistry and Laboratory Medicine, vol. 45, no. 12, pp. 1785–1792, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Herrmann, J. Peter Schmidt, N. Umanskaya et al., “The role of hyperhomocysteinemia as well as folate, vitamin B6 and B12 deficiencies in osteoporosis—a systematic review,” Clinical Chemistry and Laboratory Medicine, vol. 45, no. 12, pp. 1621–1632, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. R. R. McLean and M. T. Hannan, “B vitamins, homocysteine, and bone disease: epidemiology and pathophysiology,” Current Osteoporosis Reports, vol. 5, no. 3, pp. 112–119, 2007. View at Scopus
  45. R. Levasseur, “Bone tissue and hyperhomocysteinemia,” Joint Bone Spine, vol. 76, no. 3, pp. 234–240, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. P. Lips and N. M. van Schoor, “The effect of vitamin D on bone and osteoporosis,” Best Practice & Research, vol. 25, no. 4, pp. 585–591, 2011.
  47. Y. Sato, Y. Honda, J. Iwamoto, T. Kanoko, and K. Satoh, “Effect of folate and mecobalamin on hip fractures in patients with stroke: a randomized controlled trial,” Journal of the American Medical Association, vol. 293, no. 9, pp. 1082–1088, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. J. P. van Wijngaarden, R. A. Dhonukshe-Rutten, N. M. van Schoor, et al., “Rationale and design of the B-PROOF study, a randomized controlled trial on the effect of supplemental intake of vitamin B12 and folic acid on fracture incidence,” BMC Geriatrics, vol. 11, no. 1, article 80, 2011.
  49. J. Higgins and S. Green, Cochrane Handbook for Systematic Reviews of Interventions, Version 5. 1. 0, The Cochrane Collaboration, 2011.
  50. L. H. Allen, “How common is vitamin B-12 deficiency?” The American Journal of Clinical Nutrition, vol. 89, no. 2, pp. 693S–696S, 2009.
  51. H. McNulty and K. Pentieva, “Folate bioavailability,” Proceedings of the Nutrition Society, vol. 63, no. 4, pp. 529–536, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. E. A. Yetley, P. M. Coates, and C. L. Johnson, “Overview of a roundtable on NHANES monitoring of biomarkers of folate and vitamin B-12 status: measurement procedure issues,” American Journal of Clinical Nutrition, vol. 94, no. 1, pp. 297S–302S, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. R. Carmel, R. Green, D. S. Rosenblatt, and D. Watkins, “Update on cobalamin, folate, and homocysteine,” Hematology, pp. 62–81, 2003. View at Scopus
  54. L. Hoey, J. J. Strain, and H. McNulty, “Studies of biomarker responses to intervention with vitamin B-12: a systematic review of randomized controlled trials,” American Journal of Clinical Nutrition, vol. 89, no. 6, pp. 1981S–1996S, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Saito, K. Fujii, and K. Marumo, “Degree of mineralization-related collagen crosslinking in the femoral neck cancellous bone in cases of hip fracture and controls,” Calcified Tissue International, vol. 79, no. 3, pp. 160–168, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. R. Carmel, K. H. W. Lau, D. J. Baylink, S. Saxena, and F. R. Singer, “Cobalamin and osteoblast-specific proteins,” The New England Journal of Medicine, vol. 319, no. 2, pp. 70–75, 1988. View at Scopus
  57. G. S. Kim, C. H. Kim, J. Y. Park, K. U. Lee, and C. S. Park, “Effects of vitamin B12 on cell proliferation and cellular alkaline phosphatase activity in human bone marrow stromal osteoprogenitor cells and UMR106 osteoblastic cells,” Metabolism: Clinical and Experimental, vol. 45, no. 12, pp. 1443–1446, 1996. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Herrmann, N. Umanskaya, B. Wildemann et al., “Accumulation of homocysteine by decreasing concentrations of folate, vitamin B12 and B6 does not influence the activity of human osteoblasts in vitro,” Clinica Chimica Acta, vol. 384, no. 1-2, pp. 129–134, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Herrmann, T. Widmann, G. Colaianni, S. Colucci, A. Zallone, and W. Herrmann, “Increased osteoclast activity in the presence of increased homocysteine concentrations,” Clinical Chemistry, vol. 51, no. 12, pp. 2348–2353, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. B. L. T. Vaes, C. Lute, H. J. Blom et al., “Vitamin B12 deficiency stimulates osteoclastogenesis via increased homocysteine and methylmalonic acid,” Calcified Tissue International, vol. 84, no. 5, pp. 413–422, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. B. L. T. Vaes, C. Lute, S. P. van der Woning et al., “Inhibition of methylation decreases osteoblast differentiation via a non-DNA-dependent methylation mechanism,” Bone, vol. 46, no. 2, pp. 514–523, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. P. I. Holm, P. M. Ueland, S. E. Vollset, et al., “Betaine and folate status as cooperative determinants of plasma homocysteine in humans,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 25, no. 2, pp. 379–385, 2005.
  63. R. Clarke and J. Armitage, “Vitamin supplements and cardiovascular risk: review of the randomized trials of homocysteine-lowering vitamin supplements,” Seminars in Thrombosis and Hemostasis, vol. 26, no. 3, pp. 341–348, 2000. View at Scopus