About this Journal Submit a Manuscript Table of Contents
Journal of Robotics
Volume 2013 (2013), Article ID 126570, 8 pages
http://dx.doi.org/10.1155/2013/126570
Research Article

Using the Functional Reach Test for Probing the Static Stability of Bipedal Standing in Humanoid Robots Based on the Passive Motion Paradigm

1RBCS Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
2DIBRIS Department, University of Genoa, Viale Causa, 13 16145 Genoa, Italy

Received 24 December 2012; Revised 21 March 2013; Accepted 22 March 2013

Academic Editor: G. Muscato

Copyright © 2013 Jacopo Zenzeri et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Metta, L. Natale, F. Nori et al., “The iCub humanoid robot: an open-systems platform for research in cognitive development,” Neural Networks, vol. 23, no. 8-9, pp. 1125–1134, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. V. Mohan, P. Morasso, G. Metta, and G. Sandini, “A biomimetic, force-field based computational model for motion planning and bimanual coordination in humanoid robots,” Autonomous Robots, vol. 27, no. 3, pp. 291–307, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. V. Mohan, P. Morasso, J. Zenzeri, G. Metta, V. S. Chakravarthy, and G. Sandini, “Teaching a humanoid robot to draw ‘Shapes’,” Auton Robots, vol. 31, pp. 21–53, 2011.
  4. I. D. Loram and M. Lakie, “Direct measurement of human ankle stiffness during quiet standing: the intrinsic mechanical stiffness is insufficient for stability,” Journal of Physiology, vol. 545, no. 3, pp. 1041–1053, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Casadio, P. G. Morasso, and V. Sanguineti, “Direct measurement of ankle stiffness during quiet standing: implications for control modelling and clinical application,” Gait and Posture, vol. 21, no. 4, pp. 410–424, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. M. G. Carpenter, J. H. J. Allum, F. Honegger, A. L. Adkin, and B. R. Bloem, “Postural abnormalities to multidirectional stance perturbations in Parkinson's disease,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 75, no. 9, pp. 1245–1254, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. I. D. Loram, C. N. Maganaris, and M. Lakie, “Human postural sway results from frequent, ballistic bias impulses by soleus and gastrocnemius,” Journal of Physiology, vol. 564, no. 1, pp. 295–311, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Bottaro, Y. Yasutake, T. Nomura, M. Casadio, and P. Morasso, “Bounded stability of the quiet standing posture: an intermittent control model,” Human Movement Science, vol. 27, no. 3, pp. 473–495, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Asai, Y. Tasaka, K. Nomura, T. Nomura, M. Casadio, and P. Morasso, “A model of postural control in quiet standing: robust compensation of delay-induced instability using intermittent activation of feedback control,” PLoS ONE, vol. 4, no. 7, Article ID e6169, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. F. A. M. Ivaldi, P. Morasso, and R. Zaccaria, “Kinematic networks—a distributed model for representing and regularizing motor redundancy,” Biological Cybernetics, vol. 60, no. 1, pp. 1–16, 1988. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Zak, “Terminal attractors for addressable memory in neural networks,” Physics Letters A, vol. 133, no. 1-2, pp. 18–22, 1988. View at Scopus
  12. P. Morasso, M. Casadio, V. Mohan, and J. Zenzeri, “A neural mechanism of synergy formation for whole body reaching,” Biological Cybernetics, vol. 102, no. 1, pp. 45–55, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. P. W. Duncan, D. K. Weiner, J. Chandler, and S. Studenski, “Functional reach: a new clinical measure of balance,” Journals of Gerontology, vol. 45, no. 6, pp. M192–M197, 1990. View at Scopus
  14. V. Tikhanoff, A. Cangelosi, P. Fitzpatrick, G. Metta, L. Natale, and F. Nori, “An open-source simulator for cognitive robotics research,” Cogprints 6238, 2008.
  15. G. Metta, P. Fitzpatrick, and L. Natale, “YARP: yet another robot platform,” International Journal of Advanced Robotic Systems, vol. 3, no. 1, pp. 43–48, 2006. View at Scopus
  16. T. R. Kaminski, “The coupling between upper and lower extremity synergies during whole body reaching,” Gait and Posture, vol. 26, no. 2, pp. 256–262, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Pozzo, P. J. Stapley, and C. Papaxanthis, “Coordination between equilibrium and hand trajectories during whole body pointing movements,” Experimental Brain Research, vol. 144, no. 3, pp. 343–350, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. P. J. Stapley, T. Pozzo, G. Cheron, and A. Grishin, “Does the coordination between posture and movement during human whole-body reaching ensure center of mass stabilization?” Experimental Brain Research, vol. 129, no. 1, pp. 134–146, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. V. Mohan and P. Morasso, “Passive motion paradigm: an alternative to optimal control,” Frontiers in Neurorobotics, vol. 5, no. 4, pp. 1–28, 2011.
  20. A. S. Aruin, “The organization of anticipatory postural adjustments,” Journal of Automatic Control, vol. 12, pp. 31–37, 2002.
  21. S. Bouisset and M. Zattara, “Biomechanical study of the programming of anticipatory postural adjustments associated with voluntary movement,” Journal of Biomechanics, vol. 20, no. 8, pp. 735–742, 1987. View at Scopus
  22. W. A. Lee, T. S. Buchanan, and M. W. Rogers, “Effects of arm acceleration and behavioral conditions on the organization of postural adjustments during arm flexion,” Experimental Brain Research, vol. 66, no. 2, pp. 257–270, 1987. View at Scopus