About this Journal Submit a Manuscript Table of Contents
Journal of Robotics
Volume 2013 (2013), Article ID 910961, 17 pages
http://dx.doi.org/10.1155/2013/910961
Research Article

Constraint Study for a Hand Exoskeleton: Human Hand Kinematics and Dynamics

Center for Space Human Robotics@Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino, Italy

Received 10 May 2013; Revised 26 July 2013; Accepted 30 July 2013

Academic Editor: Kazuhiko Terashima

Copyright © 2013 Fai Chen Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. “Eurobot Ground Prototype,” http://www.esa.int/esaHS/SEM9NCZGRMG_research_0.html.
  2. “What is a Robonaut?” http://robonaut.jsc.nasa.gov/default.asp.
  3. N. C. Jordan, J. H. Saleh, and D. J. Newman, “The extravehicular mobility unit: a review of environment, requirements, and design changes in the US spacesuit,” Acta Astronautica, vol. 59, no. 12, pp. 1135–1145, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. C. N. Schabowsky, S. B. Godfrey, R. J. Holley, and P. S. Lum, “Development and pilot testing of HEXORR: Hand exoskeleton rehabilitation robot,” Journal of NeuroEngineering and Rehabilitation, vol. 7, no. 1, article 36, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. http://www.nasa.gov/mission_pages/station/main/robo-glove.html.
  6. T. T. Worsnopp, M. A. Peshkin, J. E. Colgate, and D. G. Kamper, “An actuated finger exoskeleton for hand rehabilitation following stroke,” in Proceedings of the 10th IEEE International Conference on Rehabilitation Robotics (ICORR '07), pp. 896–901, Noordwijk, The Netherlands, June 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. N. S. K. Ho, K. Y. Tong, X. L. Hu et al., “An EMG-driven exoskeleton hand robotic training device on chronic stroke subjects: task training system for stroke rehabilitation,” in Proceedings of the IEEE International Conference on Rehabilitation Robotics (Rehab Week Zurich), ETH Zurich Science City, Switzerland, July 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Cerveri, N. Lopomo, A. Pedotti, and G. Ferrigno, “Derivation of centers and axes of rotation for wrist and fingers in a hand kinematic model: methods and reliability results,” Annals of Biomedical Engineering, vol. 33, no. 3, pp. 402–412, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. J. W. Garrett, “Anthropometry of the hands of male air force flight personnel,” Tech. Rep., Aerospace Medical Research Laboratory, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio, USA, 1970.
  10. J. W. Garrett, “Anthropometry of the hands of female air force flight personnel,” Tech. Rep., Aerospace Medical Research Laboratory, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio, USA, 1970.
  11. S. R. Habib and N. N. Kamal, “Stature estimation from hand and phalanges lengths of Egyptians,” Journal of Forensic and Legal Medicine, vol. 17, no. 3, pp. 156–160, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. O. P. Jasuja and G. Singh, “Estimation of stature from hand and phalange length,” Journal of Indian Academy of Forensic Medicine, vol. 26, no. 3, pp. 100–106, 2004.
  13. S. Cobos, M. Ferre, M. A. Sanchéz-Urán, J. Ortego, and C. Peña, “Efficient human hand kinematics for manipulation tasks,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '08), pp. 2246–2251, Acropolis Convention Center, Nice, France, September 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Cobos, M. Ferre, M. Sanchez, and J. Ortego, “Constraints for realistic hand manipulation,” in Proceedings of the 10th Annual International Workshop on Presence (PRESENCE '07), pp. 369–370, Barcelona, Spain, October 2007.
  15. H. Rijpkema and M. Girard, “Computer animation of knowledge-based human grasping,” in Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '91), pp. 339–348, 1991. View at Publisher · View at Google Scholar
  16. J. J. Craig, Introduction to Robotics, Mechanics and Control, Pearson Education International, 3rd edition, 1986.
  17. T. E. Milner and D. W. Franklin, “Characterization of multijoint finger stiffness: dependence on finger posture and force direction,” IEEE Transactions on Biomedical Engineering, vol. 45, no. 11, pp. 1363–1375, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. C. J. Hasser, Force-Reflecting Anthropomorphic Hand Masters, Armstrong Lab, Crew Systems Directorate, Wright-Patterson Air Force Base, Ohio, USA, 1995.
  19. A. D. Deshpande, N. Gialias, and Y. Matsuoka, “Contributions of intrinsic visco-elastic torques during planar index finger and wrist movements,” IEEE Transactions on Biomedical Engineering, vol. 59, no. 2, pp. 586–594, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Z. Hajian and R. D. Howe, “Identification of the mechanical impedance at the human finger tip,” Journal of Biomechanical Engineering, vol. 119, no. 1, pp. 109–114, 1997. View at Scopus