Abstract

By using the Krein-Rutman theorem and bifurcation methods, we discuss the existence of positive solutions for the boundary value problems of a sixth-order ordinary differential equation.

1. Introduction

In recent years, the following boundary value problems for sixth-order ordinary differential equations have been studied extensively (see, e.g., [1–7] and the references therein):𝑒(6)+𝐴𝑒(4)+π΅π‘’ξ…žξ…ž+πΆπ‘’βˆ’π‘“(𝑑,𝑒)=0,0<π‘₯<𝐿,𝑒(0)=𝑒(𝐿)=π‘’ξ…žξ…ž(0)=π‘’ξ…žξ…ž(𝐿)=𝑒(4)(0)=𝑒(4)(𝐿)=0,(1.1) where 𝐴, 𝐡, and 𝐢 are some given real constants and 𝑓(π‘₯,𝑒) is a continuous function on 𝑅2. The boundary value problems were motivated by the study for stationary solutions of the sixth-order parabolic differential equations:πœ•π‘’=πœ•πœ•π‘‘6π‘’πœ•π‘₯6πœ•+𝐴4π‘’πœ•π‘₯4πœ•+𝐡2π‘’πœ•π‘₯2+𝑓(π‘₯,𝑒).(1.2) This equation arose in the formation of the spatial periodic patterns in bistable systems and is also a model for describing the behavior of phase fronts in materials that are undergoing a transition between the liquid and solid state. When 𝑓(π‘₯,𝑒)=π‘’βˆ’π‘’3, it was studied by [4, 5].

In [2], the existence and multiplicity results of nontrivial solutions for (1.1) were proved using a minimization theorem and Clarks theorem [6], respectively, when 𝐢=1 and 𝑓(π‘₯,𝑒)=𝑒3. The authors studied also the homoclinic solutions for (1.1) when 𝐢=βˆ’1 and 𝑓(π‘₯,𝑒)=βˆ’π‘Ž(π‘₯)𝑒|𝑒|𝜎, where π‘Ž(π‘₯) is a positive periodic function and 𝜎 is a positive constant, by the mountain-pass theorem and concentration-compactness arguments. In [3], by variational tools, including Brezis-Nirenbergs linking theorems, Gyulov et al. studied also the existence and multiplicity of nontrivial solutions of BVP (1.1). In [7], using the fixed point index theory of cone mapping, the authors gave some results for existence and multiplicity of positive solutions of BVP (1.1).

On the other hand, in [8, 9], by the Krein-Rutman theorem and the global bifurcation techniques, Ma et al. were concerned with the existence of positive solutions of the following fourth-order boundary value problem:𝑒(4)ξ€·(𝑑)=𝑓𝑑,𝑒(𝑑),π‘’ξ…žξ…žξ€Έ(𝑑),π‘‘βˆˆ(0,1),𝑒(0)=𝑒(1)=π‘’ξ…žξ…ž(0)=π‘’ξ…žξ…ž(1)=0,(1.3) where π‘“βˆΆ[0,1]Γ—[0,+∞)Γ—(βˆ’βˆž,0]β†’[0,+∞) is continuous and satisfies some conditions.

Inspired by the works of the above papers, in this paper, we consider the following nonlinear sixth-order boundary value problem:βˆ’π‘’(6)ξ€·(𝑑)=𝑓𝑑,𝑒(𝑑),π‘’ξ…žξ…ž(𝑑),𝑒(4)𝑒(𝑑),π‘‘βˆˆ(0,1),(0)=𝑒(1)=π‘’ξ…žξ…ž(0)=π‘’ξ…žξ…ž(1)=𝑒(4)(0)=𝑒(4)(1)=0,(1.4) under the following assumptions on the nonlinear term.(𝐴1)π‘“βˆΆ[0,1]Γ—[0,∞)Γ—(βˆ’βˆž,0]Γ—[0,∞)β†’[0,∞) is continuous and there exist functions π‘Ž,𝑏,𝑐,𝑑,π‘š,π‘›βˆˆπΆ([0,1,0,∞)) with π‘Ž(𝑑)+𝑏(𝑑)+𝑐(𝑑)>0 and 𝑑(𝑑)+π‘š(𝑑)+𝑛(𝑑)>0 on [0,1] such that 𝑓||||ξ€Έ||||(𝑑,𝑒,𝑝,π‘ž)=π‘Ž(𝑑)π‘’βˆ’π‘(𝑑)𝑝+𝑐(𝑑)π‘ž+π‘œπ‘’,𝑝,π‘ž,as𝑒,𝑝,π‘žβŸΆ0,(1.5) uniformly for π‘‘βˆˆ[0,1], and 𝑓||||ξ€Έ||||(𝑑,𝑒,𝑝,π‘ž)=𝑑(𝑑)π‘’βˆ’π‘š(𝑑)𝑝+𝑛(𝑑)π‘ž+π‘œπ‘’,𝑝,π‘ž,as(𝑒,𝑝,π‘ž)⟢∞,(1.6) uniformly for π‘‘βˆˆ[0,1]. Here |(𝑒,𝑝,π‘ž)|∢=βˆšπ‘’2+𝑝2+π‘ž2.(𝐴2)𝑓(𝑑,𝑒,𝑝,π‘ž)>0 for π‘‘βˆˆ[0,1] and (𝑒,𝑝,π‘ž)∈([0,∞)Γ—(βˆ’βˆž,0]Γ—[0,∞))⧡{(0,0,0)}.(𝐴3) There exist constants π‘Ž0,𝑏0,𝑐0∈[0,∞) satisfying π‘Ž20+𝑏20+𝑐20>0 and 𝑓(𝑑,𝑒,𝑝,π‘ž)β‰₯π‘Ž0π‘’βˆ’π‘0𝑝+𝑐0π‘ž+π‘œ(|(𝑒,𝑝,π‘ž)|) for (𝑑,𝑒,𝑝,π‘ž)∈[0,1]Γ—[0,∞)Γ—(βˆ’βˆž,0]Γ—[0,∞).

The existence of positive solution for (1.4) is proved using Krein-Rutman theorem [10] and the Global Bifurcation Theory [11]. The idea of this work comes from [8, 9].

The rest of the paper is organized as follows. In Section 2, we present some preliminaries and lemmas that will be used to prove our main results. In Section 3, we discuss the existence of positive solution of the problem (1.4).

2. Preliminaries

In this section, we will make some preliminaries which are needed to show our main results. Let us assume that(𝐴4)𝐴,𝐡,𝐢∈𝐢([0,1],[0,∞)) with 𝐴(𝑑)>0 or 𝐡(𝑑)>0 or 𝐢(𝑑)>0 with π‘‘βˆˆ[0,1].

Definition 2.1. We say πœ‡ is a generalized eigenvalue of the linear problem βˆ’π‘’(6)ξ€·=πœ‡π΄(𝑑)π‘’βˆ’π΅(𝑑)π‘’ξ…žξ…ž+𝐢(𝑑)𝑒(4)𝑒,π‘‘βˆˆ(0,1),(0)=𝑒(1)=π‘’ξ…žξ…ž(0)=π‘’ξ…žξ…ž(1)=𝑒(4)(0)=𝑒(4)(1)=0,(2.1) if (2.1) has nontrivial solutions.

Let 𝑒(𝑑)∢=sinπœ‹π‘‘,π‘‘βˆˆ[0,1] and π‘Œ=𝐢[0,1] be the Banach space equipped with the norm β€–π‘’β€–βˆž=max0≀𝑑≀1|𝑒(𝑑)|. 𝑋 is defined as𝑋=π‘’βˆˆπΆ4[]0,1βˆ£π‘’(0)=𝑒(1)=π‘’ξ…žξ…ž(0)=π‘’ξ…žξ…ž(1)=𝑒(4)(0)=𝑒(4)[](1)=0,βˆƒπœ€βˆˆ0,1,s.t.βˆ’πœ€π‘’(𝑑)≀𝑒(4)[]ξ€Ύ.(𝑑)β‰€πœ€π‘’(𝑑),π‘‘βˆˆ0,1(2.2)

For any π‘’βˆˆπ‘‹, we haveξ€œπ‘’(𝑑)=10ξ€œ10𝐻(𝑑,𝜏)𝐻(𝜏,𝑠)𝑒(4)(𝑠)π‘‘π‘ π‘‘πœ,(2.3) where𝐻(𝑑,𝑠)=𝑑(1βˆ’π‘ ),0≀𝑑≀𝑠≀1,𝑠(1βˆ’π‘‘),0≀𝑠≀𝑑≀1.(2.4) Based on (2.3) and (1/πœ‹4∫)𝑒(𝑑)=10∫10𝐻(𝑑,𝜏)𝐻(𝜏,𝑠)𝑒(𝑠)π‘‘π‘ π‘‘πœ, we come toβˆ’πœ€πœ‹4π‘’πœ€(𝑑)≀𝑒(𝑑)β‰€πœ‹4𝑒[].(𝑑),π‘‘βˆˆ0,1(2.5) Since βˆ’πœ€/πœ‹4<πœ€, the norm of π‘’βˆˆπ‘‹ can be defined asβ€–π‘’β€–π‘‹ξ€½βˆΆ=infπœ€βˆ£βˆ’πœ€π‘’(𝑑)≀𝑒(4)[]ξ€Ύ.(𝑑)β‰€πœ€π‘’(𝑑),π‘‘βˆˆ0,1(2.6) It is not difficult to verify that (𝑋,‖⋅‖𝑋) is a Banach space. Letξ€½π‘ƒβˆΆ=π‘’βˆˆπ‘‹βˆ£π‘’(4)(𝑑)β‰₯0,π‘’ξ…žξ…ž[]ξ€Ύ.(𝑑)≀0,𝑒(𝑑)β‰₯0,π‘‘βˆˆ0,1(2.7) Then the cone 𝑃 is normal and has a nonempty interior βˆ˜π‘ƒ.

Lemma 2.2. For π‘’βˆˆπ‘‹, then β€–π‘’β€–βˆžβ‰€β€–π‘’ξ…žβ€–βˆžβ‰€β€–π‘’ξ…žξ…žβ€–βˆžβ‰€β€–π‘’ξ…žξ…žξ…žβ€–βˆžβ‰€β€–π‘’(4)β€–βˆžβ‰€β€–π‘’β€–π‘‹.

Proof. (1) By 𝑒(0)=𝑒(1), there is a πœ‰βˆˆ(0,1) such that π‘’ξ…ž(πœ‰)=0, and so βˆ’π‘’ξ…žβˆ«(𝑑)=πœ‰π‘‘π‘’ξ…žξ…ž(𝑠)𝑑𝑠,π‘‘βˆˆ[0,πœ‰]. Hence |π‘’ξ…žβˆ«(𝑑)|≀|πœ‰π‘‘|π‘’ξ…žξ…žβˆ«(𝑠)|𝑑𝑠|≀|10|π‘’ξ…žξ…ž(𝑠)|𝑑𝑠|β‰€β€–π‘’ξ…žξ…žβ€–βˆž. By π‘’ξ…žξ…ž(0)=π‘’ξ…žξ…ž(1), there is a πœ‚βˆˆ(0,1), which makes π‘’ξ…žξ…žξ…ž(πœ‚)=0, thereby we come to βˆ’π‘’ξ…žξ…žξ…žβˆ«(𝑑)=πœ‚π‘‘π‘’(4)(𝑠)𝑑𝑠,π‘‘βˆˆ[0,πœ‚]. And we have |π‘’ξ…žξ…žξ…žβˆ«(𝑑)|≀|πœ‚π‘‘|𝑒(4)∫(𝑠)|𝑑𝑠|≀|10|𝑒(4)(𝑠)|𝑑𝑠|≀‖𝑒(4)β€–βˆž.
(2) Because of 𝑒(0)=0, we come to ∫|𝑒(𝑑)|≀|𝑑0|π‘’ξ…ž(𝑠)|𝑑𝑠|β‰€β€–π‘’ξ…žβ€–βˆž. Correspondingly, β€–π‘’β€–βˆžβ‰€β€–π‘’ξ…žβ€–βˆž and we can obtain β€–π‘’ξ…žξ…žβ€–βˆžβ‰€β€–π‘’ξ…žξ…žξ…žβ€–βˆž for the same reason.
(3) By the definition of 𝑋, we know |𝑒(4)(𝑑)|β‰€πœ€π‘’(𝑑)β‰€πœ€, that is, |𝑒(4)|βˆžβ‰€πœ€. Correspondingly, we come to |𝑒(4)|βˆžβ‰€|𝑒|𝑋.
Based on the combination of (1), (2) and (3), the conclusion can be reached and the lemma is thus proved.

For any π‘’βˆˆπ‘‹, define a linear operator π‘‡βˆΆπ‘‹β†’π‘Œ by ξ€œπ‘‡π‘’(𝑑)∢=10ξ€œ10ξ€œ10𝐻(𝑑,π‘₯)𝐻(π‘₯,𝜏)𝐻(𝜏,𝑠)𝐴(𝑠)𝑒(𝑠)βˆ’π΅(𝑠)π‘’ξ…žξ…ž(𝑠)+𝐢(𝑠)𝑒(4)ξ€»(𝑠)π‘‘π‘ π‘‘πœπ‘‘π‘₯.(2.8)

Theorem 2.3. Assume that (𝐴4) holds, let π‘Ÿ(𝑑) be the spectral radius of 𝑇, then Problem (2.1) has an algebraically simple eigenvalue, πœ‡1(𝐴,𝐡,𝐢)=(π‘Ÿ(𝑑))βˆ’1, with a positive eigenfunction πœ‘(β‹…)βˆˆβˆ˜π‘ƒ. Moreover, there is no other eigenvalue with a positive eigenfunction.

Proof. It is easy to check that Problem (2.1) is equivalent to the integral equation 𝑒(𝑑)=πœ‡π‘‡π‘’(𝑑).
We define π‘‡βˆΆπ‘‹β†’π‘‹.
In fact, for π‘’βˆˆπ‘‹, we have (𝑇𝑒)(4)ξ€œ(𝑑)=10𝐻(𝑑,𝑠)𝐴(𝑠)𝑒(𝑠)βˆ’π΅(𝑠)π‘’ξ…žξ…ž(𝑠)+𝐢(𝑠)𝑒(4)ξ€»(𝑠)𝑑𝑠.(2.9) Combining this with the fact [𝐴(𝑠)𝑒(𝑠)βˆ’π΅(𝑠)π‘’ξ…žξ…ž(𝑠)+𝐢(𝑠)𝑒(4)(𝑠)]βˆˆπ‘Œ, it can be concluded that βˆ’π‘0πœ”(𝑑)≀(𝑇𝑒)(4)(𝑑)≀𝑐0[],πœ”(𝑑),π‘‘βˆˆ0,1(2.10) where 𝑐0∢=β€–π΄β€–βˆžβ€–β€–π‘’βˆžβ€–β€–+β€–π΅β€–βˆžβ€–β€–π‘’βˆžξ…žξ…žβ€–β€–+β€–πΆβ€–βˆžβ€–β€–π‘’βˆž(4)β€–β€–,ξ€œπœ”(𝑑)=10ξ€œ10𝑑𝐻(𝑑,𝜏)𝐻(𝜏,𝑠)π‘‘π‘ π‘‘πœ=𝑑24(π‘‘βˆ’1)2ξ€Έ.βˆ’π‘‘βˆ’1(2.11) Thus, there exist corresponding constants 𝜌1,𝜌2, which make 𝜌1𝑒(𝑑)β‰€πœ”(𝑑)β‰€πœŒ2[].𝑒(𝑑),π‘‘βˆˆ0,1(2.12) Consequently, we obtain π‘‡π‘’βˆˆπ‘‹, thus 𝑇(𝑋)βŠ†π‘‹. The assertion is proved.
If π‘’βˆˆπ‘ƒ, then [𝐴(𝑠)𝑒(𝑠)βˆ’π΅(𝑠)π‘’ξ…žξ…ž(𝑠)+𝐢(𝑠)𝑒(4)(𝑠)]β‰₯0,π‘ βˆˆ[0,1], and correspondingly, (𝑇𝑒)(4)ξ€œ(𝑑)=10𝐻(𝑑,𝑠)𝐴(𝑠)𝑒(𝑠)βˆ’π΅(𝑠)π‘’ξ…žξ…ž(𝑠)+𝐢(𝑠)𝑒(4)ξ€»(𝑠)𝑑𝑠β‰₯0,(𝑇𝑒)ξ…žξ…žξ€œ(𝑑)=10π»ξ€·βˆ’(𝑑,𝜏)(𝑇𝑒)(4)ξ€Έξ€œ(𝜏)π‘‘πœβ‰€0,(𝑇𝑒)(𝑑)=10ξ€œ10𝐻(𝑑,π‘₯)𝐻(π‘₯,𝜏)(𝑇𝑒)(4)(𝜏)π‘‘πœπ‘‘π‘₯β‰₯0.(2.13) So, π‘‡π‘’βˆˆπ‘ƒ, and correspondingly 𝑇(𝑃)βŠ†π‘ƒ.
Because 𝑇(𝑋)βŠ‚πΆ6[0,1]βˆ©π‘‹, and 𝐢6[0,1]βˆ©π‘‹ is compactly embedded in 𝑋, thus we obtain that π‘‡βˆΆπ‘‹β†’π‘‹ is completely continuous.
Next, we will prove that π‘‡βˆΆπ‘‹β†’π‘‹ is strongly positive.
(1) For any π‘’βˆˆπ‘ƒβ§΅{0}, if 𝐴(𝑑)>0 on [0,1], then there exists a constant π‘˜>0 such that ξ€œπ‘‡π‘’(𝑑)β‰₯π‘˜10ξ€œ10ξ€œ10𝐻(𝑑,π‘₯)𝐻(π‘₯,𝜏)𝐻(𝜏,𝑠)𝑒(𝑠)π‘‘π‘ π‘‘πœπ‘‘π‘₯∢=𝑇1𝑒(𝑑).(2.14) It is easy to verify that there exists π‘Ÿ1>0, such that 𝑇1𝑒(𝑑)β‰₯π‘Ÿ1𝑒(𝑑) on [0,1]. Thus 𝑇𝑒(𝑑)β‰₯π‘Ÿ1𝑒(𝑑).
For any π‘’βˆˆπ‘ƒβ§΅{0}, if 𝐡(𝑑)>0 on [0,1], then there exists a constant π‘˜1>0 such that ξ€œπ‘‡π‘’(𝑑)β‰₯10ξ€œ10ξ€œ10𝐻(𝑑,π‘₯)𝐻(π‘₯,𝜏)𝐻(𝜏,𝑠)βˆ’π΅(𝑠)π‘’ξ…žξ…žξ€Έ(𝑠)π‘‘π‘ π‘‘πœπ‘‘π‘₯β‰₯βˆ’π‘˜1ξ€œ10ξ€œ10ξ€œ10𝐻(𝑑,π‘₯)𝐻(π‘₯,𝜏)𝐻(𝜏,𝑠)π‘’ξ…žξ…ž(𝑠)π‘‘π‘ π‘‘πœπ‘‘π‘₯=π‘˜1ξ€œ10ξ€œ10𝐻(𝑑,π‘₯)𝐻(π‘₯,𝜏)𝑒(𝑠)π‘‘πœπ‘‘π‘₯∢=𝑇2𝑒(𝑑).(2.15) Then there exists π‘Ÿ2>0, which makes 𝑇2𝑒(𝑑)β‰₯π‘Ÿ2𝑒(𝑑) on [0,1]. Thus, 𝑇𝑒(𝑑)β‰₯π‘Ÿ2𝑒(𝑑).
For any π‘’βˆˆπ‘ƒβ§΅{0}, if 𝐢(𝑑)>0 on [0,1], similarly, we can verify that there exists π‘Ÿ3>0, which makes 𝑇𝑒(𝑑)β‰₯π‘Ÿ3𝑒(𝑑) on [0,1].
Hence we obtain 𝑇𝑒(𝑑)β‰₯π‘Ÿπ‘’(𝑑), for all π‘‘βˆˆ[0,1], in which π‘Ÿ=min{π‘Ÿ1,r2,π‘Ÿ3}.
(2) Thanks to the definition of 𝑇, we come to (𝑇𝑒)(4)ξ€œ(𝑑)=10𝐻(𝑑,𝑠)𝐴(𝑠)𝑒(𝑠)βˆ’π΅(𝑠)π‘’ξ…žξ…ž(𝑠)+𝐢(𝑠)𝑒(4)ξ€»(𝑠)𝑑𝑠.(2.16) For any π‘’βˆˆπ‘ƒβ§΅{0}, if 𝐴(𝑑)>0 on [0,1], there exist π‘˜>0 and π‘Ÿ4>0 such that (𝑇𝑒)(4)ξ€œ(𝑑)β‰₯10ξ€œπ»(𝑑,𝑠)𝐴(𝑠)𝑒(𝑠)𝑑𝑠β‰₯π‘˜10𝐻(𝑑,𝑠)𝑒(𝑠)𝑑𝑠β‰₯π‘Ÿ4𝑒(𝑑).(2.17) For any π‘’βˆˆπ‘ƒβ§΅{0}, if 𝐡(𝑑)>0 on [0,1], there exist π‘˜1>0 and π‘Ÿ5>0 such that (𝑇𝑒)(4)ξ€œ(𝑑)β‰₯10𝐻(𝑑,𝑠)βˆ’π΅(𝑠)π‘’ξ…žξ…žξ€»(𝑠)𝑑𝑠β‰₯π‘˜1ξ€œ10𝐻(𝑑,𝑠)βˆ’π‘’ξ…žξ…žξ€Έ(𝑠)𝑑𝑠=π‘˜1𝑒(𝑠)β‰₯π‘Ÿ5𝑒(𝑑).(2.18) To π‘’βˆˆπ‘ƒβ§΅{0}, if 𝐢(𝑑)>0 on [0,1], there exist π‘˜2>0 and π‘Ÿ6>0 such that (𝑇𝑒)(4)ξ€œ(𝑑)β‰₯10𝐻(𝑑,𝑠)𝐢(𝑠)𝑒(4)(𝑠)𝑑𝑠β‰₯π‘˜2ξ€œ10𝐻(𝑑,𝑠)𝑒(4)(𝑠)𝑑𝑠=βˆ’π‘˜2π‘’ξ…žξ…ž(𝑠)β‰₯π‘Ÿ6𝑒(𝑑).(2.19) Hence we obtain (𝑇𝑒)(4)(𝑑)β‰₯π‘Ÿξ…žπ‘’(𝑑), for all π‘‘βˆˆ[0,1], where π‘Ÿξ…ž=min{π‘Ÿ4,π‘Ÿ5,π‘Ÿ6}.
(3) It is easy to come to (𝑇𝑒)ξ…žξ…žξ€œ(𝑑)=10ξ€œ10𝐻(𝑑,𝜏)𝐻(𝜏,𝑠)𝐴(𝑠)𝑒(𝑠)βˆ’π΅(𝑠)π‘’ξ…žξ…ž(𝑠)+𝐢(𝑠)𝑒(4)ξ€»(𝑠)π‘‘π‘ π‘‘πœ,(2.20) for all π‘’βˆˆπ‘ƒβ§΅{0}, if 𝐴(𝑑)>0 on [0,1], there exist constants π‘˜>0 and π‘Ÿ7>0 such that βˆ’(𝑇𝑒)ξ…žξ…žξ€œ(𝑑)β‰₯10ξ€œ10ξ€œπ»(𝑑,𝜏)𝐻(𝜏,𝑠)𝐴(𝑠)𝑒(𝑠)π‘‘π‘ π‘‘πœβ‰₯π‘˜10ξ€œ10𝐻(𝑑,𝜏)𝐻(𝜏,𝑠)𝑒(𝑠)π‘‘π‘ π‘‘πœβ‰₯π‘Ÿ7𝑒(𝑑),(2.21) for all π‘’βˆˆπ‘ƒβ§΅{0}, if 𝐡(𝑑)>0 on [0,1], there exist constants π‘˜1>0 and π‘Ÿ8>0 such that βˆ’(𝑇𝑒)ξ…žξ…žξ€œ(𝑑)β‰₯10ξ€œ10𝐻(𝑑,𝜏)𝐻(𝜏,𝑠)βˆ’π΅(𝑠)π‘’ξ…žξ…žξ€»(𝑠)π‘‘π‘ π‘‘πœβ‰₯π‘˜1ξ€œ10ξ€œ10𝐻(𝑑,𝜏)𝐻(𝜏,𝑠)βˆ’π‘’ξ…žξ…žξ€Έ(𝑠)π‘‘π‘ π‘‘πœ=π‘˜1ξ€œ10𝐻(𝑑,𝜏)𝑒(𝜏)π‘‘πœβ‰₯π‘Ÿ8𝑒(𝑑),(2.22) for all π‘’βˆˆπ‘ƒβ§΅{0}, if 𝐢(𝑑)>0 on [0,1], there exist constants π‘˜2>0 and π‘Ÿ9>0 such that βˆ’(𝑇𝑒)ξ…žξ…žξ€œ(𝑑)β‰₯10ξ€œ10𝐻(𝑑,𝜏)𝐻(𝜏,𝑠)𝐢(𝑠)𝑒(4)(𝑠)π‘‘π‘ π‘‘πœβ‰₯π‘˜2ξ€œ10ξ€œ10𝐻(𝑑,𝜏)𝐻(𝜏,𝑠)𝑒(4)(𝑠)π‘‘π‘ π‘‘πœ=π‘˜2𝑒(𝑑)β‰₯π‘Ÿ9𝑒(𝑑).(2.23) Hence we obtain βˆ’(𝑇𝑒)ξ…žξ…ž(𝑑)β‰₯π‘Ÿξ…žξ…žπ‘’(𝑑), for all π‘‘βˆˆ[0,1], where π‘Ÿξ…žξ…ž=min{π‘Ÿ7,π‘Ÿ8,π‘Ÿ9}.
By (1), (2), and (3), we have π‘‡π‘’βˆˆβˆ˜π‘ƒ.
According to Krein-Rutman theorem, we know that 𝑇 has a single algebraic eigenvalue π‘Ÿ(𝑇)>0 which corresponds to the eigenvector πœ‘(β‹…)βˆˆβˆ˜π‘ƒ. Furthermore, there is no other eigenvalues with corresponding positive eigenfunctions. Correspondingly, πœ‡1(𝐴,𝐡,𝐢)=(π‘Ÿ(𝑑))βˆ’1 is an algebraic single eigenvalue of Problem (2.1) with a corresponding positive eigenvector πœ‘(β‹…)βˆˆβˆ˜π‘ƒ, and there is no any other eigenvalues which have corresponding positive feature vector. The theorem is thus proved.

3. Main Results

The main result of this paper is as follows.

Theorem 3.1. Let (𝐴1), (𝐴2), and (𝐴3) hold. Assume that either πœ‡1(𝑑,π‘š,𝑛)<1<πœ‡1(π‘Ž,𝑏,𝑐)orπœ‡1(π‘Ž,𝑏,𝑐)<1<πœ‡1(𝑑,π‘š,𝑛).(3.1) Then (1.4) has at least one positive solution.

Proof. Define that 𝐿∢𝐷(𝐿)β†’π‘Œ by 𝐿(𝑒)∢=βˆ’π‘’(6), π‘’βˆˆπ·(𝐿), where 𝐷(𝐿)=π‘’βˆˆπΆ6[]0,1βˆ£π‘’(0)=𝑒(1)=π‘’ξ…žξ…ž(0)=π‘’ξ…žξ…ž(1)=𝑒(4)(0)=𝑒(4)ξ€Ύ(1)=0.(3.2) It is easy to verify that πΏβˆ’1βˆΆπ‘Œβ†’π‘‹ is compact.
Let 𝜁,πœ‰βˆˆπΆ([0,1]Γ—[0,∞)Γ—(βˆ’βˆž,0]Γ—[0,∞)), and satisfy 𝑓𝑓(𝑑,𝑒,𝑝,π‘ž)=π‘Ž(𝑑)π‘’βˆ’π‘(𝑑)𝑝+𝑐(𝑑)π‘ž+𝜁(𝑑,𝑒,𝑝,π‘ž),(𝑑,𝑒,𝑝,π‘ž)=𝑑(𝑑)π‘’βˆ’π‘š(𝑑)𝑝+𝑛(𝑑)π‘ž+πœ‰(𝑑,𝑒,𝑝,π‘ž).(3.3) Obviously, by the condition (𝐴1), we have lim||||(𝑒,𝑝,π‘ž)β†’0𝜁(𝑑,𝑒,𝑝,π‘ž)||||[],(𝑒,𝑝,π‘ž)=0,uniformlyforπ‘‘βˆˆ0,1lim|(𝑒,𝑝,π‘ž)|β†’βˆžπœ‰(𝑑,𝑒,𝑝,π‘ž)||(||[].𝑒,𝑝,π‘ž)=0,uniformlyforπ‘‘βˆˆ0,1(3.4) Let Μƒπœ‰ξ€½||πœ‰||||||[]ξ€Ύ(r)=max(𝑑,𝑒,𝑝,π‘ž)∣0≀𝑒,𝑝,π‘žβ‰€π‘Ÿ,π‘‘βˆˆ0,1,(3.5) It is easy to see the fact that Μƒπœ‰(π‘Ÿ) is monotone, not decreasing and limπ‘Ÿβ†’βˆžΜƒπœ‰(π‘Ÿ)π‘Ÿ=0.(3.6)
Let us consider 𝐿𝑒=πœ†π‘Ž(𝑑)π‘’βˆ’π‘(𝑑)π‘’ξ…žξ…ž+𝑐(𝑑)𝑒(4)ξ€»ξ€·+πœ†πœπ‘‘,𝑒,π‘’ξ…žξ…ž,𝑒(4)ξ€Έ,πœ†>0,(3.7) as a bifurcation problem from the trivial solution 𝑒≑0.
It is easy to verify that (3.7) is equivalent to equation ξ‚»ξ€œπ‘’(𝑑)=πœ†10ξ€œ10ξ€œ10𝐻(𝑑,π‘₯)𝐻(π‘₯,𝜏)𝐻(𝜏,𝑠)𝐴(𝑠)𝑒(𝑠)βˆ’π΅(𝑠)π‘’ξ…žξ…ž(𝑠)+𝐢(𝑠)𝑒(4)ξ€»ξ‚Όξ‚»ξ€œ(𝑠)π‘‘π‘ π‘‘πœπ‘‘π‘₯+πœ†10ξ€œ10ξ€œ10𝐻(𝑑,π‘₯)𝐻(π‘₯,𝜏)𝐻(𝜏,𝑠)πœπ‘‘,𝑒,π‘’ξ…žξ…ž,𝑒(4)ξ€Έξ‚Όπ‘‘π‘ π‘‘πœπ‘‘π‘₯=βˆΆπ‘…(πœ†,𝑒).(3.8) From the proof of Theorem 2.3, we know that ξπ‘‡βˆΆπ‘‹β†’π‘‹ is strong positive and compact: ξξ€œπ‘‡π‘’(𝑑)∢=10ξ€œ10ξ€œ10𝐻(𝑑,π‘₯)𝐻(π‘₯,𝜏)𝐻(𝜏,𝑠)π‘Ž(𝑠)𝑒(𝑠)βˆ’π‘(𝑠)π‘’ξ…žξ…ž(𝑠)+𝑐(𝑠)𝑒(4)ξ€»(𝑠)π‘‘π‘ π‘‘πœπ‘‘π‘₯.(3.9) Define 𝐹∢[0,∞)×𝑋→𝑋 by ξ€œπΉ(πœ†,𝑒)∢=πœ†10ξ€œ10ξ€œ10𝐻(𝑑,π‘₯)𝐻(π‘₯,𝜏)𝐻(𝜏,𝑠)πœπ‘‘,𝑒,π‘’ξ…žξ…ž,𝑒(4)ξ€Έπ‘‘π‘ π‘‘πœπ‘‘π‘₯,(3.10) then by (3.4) and Lemma 2.2, we know that when ‖𝑒‖𝑋→0, ‖‖𝐹(πœ†,𝑒)𝑋=π‘œβ€–π‘’β€–π‘‹ξ€ΈβŸΆ0partlyconsistenttoπœ†.(3.11) Based on Theorem  2 in literature [11], we come to the following conclusion.
There exists an unbounded connected subset Ξ“ for the following set: 𝐷𝑝𝑇=[βˆͺπœ‡(πœ†,𝑒)∈0,∞)Γ—π‘ƒβˆΆπ‘’=πœ†π‘‡π‘’+𝐹(πœ†,𝑒),π‘’βˆˆint𝑃1(π‘Ž,𝑏,𝑐),0ξ€Έξ€Ύ(3.12) such that (πœ‡1(π‘Ž,𝑏,𝑐),0)βˆˆΞ“.
Next, we will verify the result of this theorem.
Obviously, any solution of (3.7), such as (1,𝑒), is the solution of problem (1.4). If we want to verify Ξ“ passing through hyperplane {1}×𝑋, we only need to verify that Ξ“ connects (πœ‡1(π‘Ž,𝑏,𝑐),0) and (πœ‡1(𝑑,π‘š,𝑛),∞).
Let (πœ‚π‘›,𝑦𝑛)βˆˆΞ“ and satisfy πœ‚π‘›+β€–β€–π‘¦π‘›β€–β€–π‘‹βŸΆβˆž,π‘›βŸΆβˆž.(3.13) Since (0,0) is the only solution of (3.7) when πœ†=0 and Ξ“βˆ©({0}×𝑋)=, we have πœ‚π‘›>0 for all π‘›βˆˆπ‘.
Case 1 (πœ‡1(𝑑,π‘š,𝑛)<1<πœ‡1(π‘Ž,𝑏,𝑐)). If we want to verify that (1.4) have at least one positive solution, we only need to verify that Ξ“ connects (πœ‡1(π‘Ž,𝑏,𝑐),0) and (πœ‡1(𝑑,π‘š,𝑛),∞), that is, to verify ξ€·πœ‡1(𝑑,π‘š,𝑛),πœ‡1ξ€ΈβŠ†(π‘Ž,𝑏,𝑐){πœ†βˆˆπ‘…βˆ£(πœ†,𝑒)βˆˆΞ“}.(3.14) The proof can be divided into the following two steps.Step 1. If we can verify that there exists a constant 𝑀>0 such that πœ‚π‘›βŠ‚[0,𝑀], where π‘›βˆˆπ‘, then this connects (πœ‡1(π‘Ž,𝑏,𝑐),0) and (πœ‡1(𝑑,π‘š,𝑛),∞).
By (3.13), when π‘›β†’βˆž, β€–π‘¦π‘›β€–π‘‹β†’βˆž, and we divide the two sides of equation 𝐿𝑦𝑛(𝑑)=πœ‚π‘›ξ‚€π‘‘(𝑑)π‘¦π‘›βˆ’π‘š(𝑑)π‘¦π‘›ξ…žξ…ž+𝑛(𝑑)𝑦𝑛(4)+πœ‚π‘›πœ‰ξ‚€π‘‘,𝑦𝑛(𝑑),π‘¦π‘›ξ…žξ…ž(𝑑),𝑦𝑛(4)(𝑑),(3.15) with ‖𝑦𝑛‖𝑋 at the same time. Let 𝑦𝑛=𝑦𝑛/‖𝑦𝑛‖𝑋, then 𝑦𝑛 is bounded in 𝑋, and we have already known that πΏβˆ’1 is compact and the bounded set is mapped as bicompact set, so there exists convergent subsequence in {𝑦𝑛(𝑑)} we might as well still mark it as {𝑦𝑛(𝑑)}; and satisfy π‘¦π‘›βŸΆπ‘¦,π‘¦βˆˆπ‘‹,‖𝑦‖𝑋=1.(3.16) Furthermore, because |||πœ‰ξ‚€π‘‘,𝑦𝑛(𝑑),π‘¦π‘›ξ…žξ…ž(𝑑),𝑦𝑛(4)|||(𝑑)β€–β€–π‘¦π‘›β€–β€–π‘‹β‰€Μƒπœ‰ξ€·β€–β€–π‘¦π‘›β€–β€–π‘‹ξ€Έβ€–β€–π‘¦π‘›β€–β€–π‘‹,(3.17) according to (3.6) and Lemma 2.2, we obtain limπ‘›β†’βˆž|||πœ‰ξ‚€π‘‘,𝑦𝑛(𝑑),π‘¦π‘›ξ…žξ…ž(𝑑),𝑦𝑛(4)|||(𝑑)‖‖𝑦𝑛‖‖𝑋=0.(3.18) Hence there is ξ€œπ‘¦(𝑑)∢=10ξ€œ10ξ€œ10𝐻(𝑑,π‘₯)𝐻(π‘₯,𝜏)𝐻(𝜏,𝑠)πœ‚ξ€Ίπ‘‘(𝑠)𝑒(𝑠)βˆ’π‘š(𝑠)π‘’ξ…žξ…ž(𝑠)+𝑛(𝑠)𝑒(4)ξ€»(𝑠)π‘‘π‘ π‘‘πœπ‘‘π‘₯,(3.19) where πœ‚=limπ‘›β†’βˆžπœ‚π‘›. Hence 𝐿𝑦(𝑑)=πœ‚(𝑑(𝑑)π‘¦βˆ’π‘š(𝑑)π‘¦ξ…žξ…ž+𝑛(𝑑)𝑦(4)). Combined with Theorem 2.3, it is easy to obtain πœ‚=πœ‡1(𝑑,π‘š,𝑛).(3.20) To sum up, Ξ“ connects (πœ‡1(π‘Ž,𝑏,𝑐),0) with (πœ‡1(𝑑,π‘š,𝑛),∞).
Step 2. To verify the fact that arbitrary π‘›βˆˆπ‘, there exists π‘š>0 such that πœ‚π‘›βŠ‚[0,𝑀].
Thanks to the Lemma  2.1 in [8], we only need to verify that nonlinear operator 𝑅(πœ†,𝑒) has linear function 𝑉, and there exists (πœ‚,𝑦)∈(0,∞)×𝑃 such that ‖𝑦‖𝑋=1 and πœ‚π‘‰π‘¦β‰₯𝑦. It follows from (𝐴3) that there exist π‘Ž0,𝑏0,𝑐0∈[0,∞) such that π‘Ž20+𝑏20+𝑐20>0, and 𝑓(𝑑,𝑒,𝑝,π‘ž)β‰₯π‘Ž0𝑒+𝑏0𝑝+𝑐0[]Γ—[]Γ—[π‘ž,(𝑑,𝑒,𝑝,π‘ž)∈0,10,∞)Γ—(βˆ’βˆž,00,∞).(3.21) To π‘’βˆˆπ‘‹, let ξ€œπ‘‰π‘’(𝑑)=10ξ€œ10ξ€œ10ξ€Ίπ‘Žπ»(𝑑,π‘₯)𝐻(π‘₯,𝜏)𝐻(𝜏,𝑠)0𝑒(𝑠)βˆ’π‘0π‘’ξ…žξ…ž(𝑠)+𝑐0𝑒(4)ξ€»(𝑠)π‘‘π‘ π‘‘πœπ‘‘π‘₯.(3.22) Then 𝑉 is the linear function of 𝑅(πœ†,𝑒).
Again, as 𝑉𝑒(𝑑)πœ‹2ξ‚Ά=ξ€œ10ξ€œ10ξ€œ10ξ‚Έπ‘Žπ»(𝑑,π‘₯)𝐻(π‘₯,𝜏)𝐻(𝜏,𝑠)0𝑒(𝑠)πœ‹2βˆ’π‘0π‘’ξ…žξ…ž(𝑠)πœ‹2+𝑐0𝑒(4)(𝑠)πœ‹2ξ‚Ή=ξ€œπ‘‘π‘ π‘‘πœπ‘‘π‘₯10ξ€œ10ξ€œ10ξ‚ƒπ‘Žπ»(𝑑,π‘₯)𝐻(π‘₯,𝜏)𝐻(𝜏,𝑠)0πœ‹2βˆ’π‘0+𝑐0πœ‹2ξ‚„=1𝑒(𝑠)π‘‘π‘ π‘‘πœπ‘‘π‘₯πœ‹6ξ‚ƒπ‘Ž0πœ‹2βˆ’π‘0+𝑐0πœ‹2𝑒(𝑑),(3.23) that is, ξ‚Έπ‘Ž0πœ‹6+𝑏0πœ‹4+𝑐0πœ‹2ξ‚Ήβˆ’1𝑉𝑒(𝑑)πœ‹2ξ‚Ά=𝑒(𝑑)πœ‹2,(3.24) by the Lemma  2.1 in [8], we obtain ||πœ‚π‘›||β‰€ξ‚Έπ‘Ž0πœ‹6+𝑏0πœ‹4+𝑐0πœ‹2ξ‚Ήβˆ’1.(3.25) The conclusion is thus proved.Case 2 (πœ‡1(π‘Ž,𝑏,𝑐)<1<πœ‡1(𝑑,π‘š,𝑛)). If (πœ‚π‘›,𝑦𝑛)βˆˆΞ“, which satisfies limπ‘›β†’βˆžπœ‚π‘›+‖𝑦𝑛‖𝑋=∞, and limπ‘›β†’βˆžβ€–π‘¦π‘›β€–π‘‹=∞, then we obtain ξ€·πœ‡1(π‘Ž,𝑏,𝑐),πœ‡1ξ€ΈβŠ†(𝑑,π‘š,𝑛){πœ†βˆˆπ‘…βˆ£(πœ†,𝑒)βˆˆΞ“},(3.26) hence we have ({1}×𝑋)βˆ©Ξ“β‰ .
Similar to Case 1, the verification of Case 2 can also be divided into two steps with the conclusion that Ξ“ connects (πœ‡1(π‘Ž,𝑏,𝑐),0) and (πœ‡1(𝑑,π‘š,𝑛),∞). And we come to the conclusion that Ξ“ passes through hyperplane {1}×𝑋 on 𝑅×𝑋, hence (1.4) have at least one positive solution.

Acknowledgments

The author are very grateful to the anonymous referees for their valuable suggestions and to be sponsored by the Tutorial Scientific Research Program Foundation of Education Department of Gansu Province China (1110-05).