Journal of Powder Technology
Volume 2013 (2013), Article ID 643167, 3 pages
Research Article

Correlation between Shear Wave Velocity and Porosity in Porous Solids and Rocks

1Institute of Materials & Machine Mechanics, Slovak Academy of Sciences, Račianska 75, SK—831 02 Bratislava 3, Slovakia
2Slovak University of Technology, IVMA STU, Institute of Technologies & Materials STU, Pionierska 15, SK—831 02 Bratislava 3, Slovakia

Received 6 July 2012; Revised 16 October 2012; Accepted 30 October 2012

Academic Editor: Chengfeng Li

Copyright © 2013 J. Kováčik and Š. Emmer. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The shear wave velocity dependence on porosity was modelled using percolation theory model for the shear modulus porosity dependence. The obtained model is not a power law dependence (no simple scaling with porosity), but a more complex equation. Control parameters of this equation are shear wave velocity of bulk solid, percolation threshold of the material and the characteristic power law exponent for shear modulus porosity dependence. This model is suitable for all porous materials, mortars and porous rocks filled with liquid or gas. In the case of pores filled with gas the model can be further simplified: The term for the ratio of the gas density to the density of solid material can be omitted in the denominator (the ratio is usually in the range of (10−4, 10−3) for all solids). This simplified equation was then tested on the experimental data set for porous ZnO filled with air. Due to lack of reasonable data the scientists are encouraged to test the validity of proposed model using their experimental data.