Review Article

Copper Oxide Nanomaterials Prepared by Solution Methods, Some Properties, and Potential Applications: A Brief Review

Table 1

Summary on the effect of starting materials, solvents, and surfactants on morphology of CuO nanostructures.

MorphologySizeSolventStarting materialsSurfactantMethodReference

Hierarchical superstructureDiameter: 200 nm; length: 600 nm
SEM
Distilled waterCu(CH3COO)2 NaOH Ethylene diamine-te tra-acetic acid disodiumSonochemical[11]

Cubic 230 nm Water Cu(CH3COO)2 NaOH Without surfactant Microwave [18]
Sphere 40 nm, 90 nm, and 140 nm (as the concentration of salt increases)Ethylene glycol PVP, CTAB

Nanoparticle50 nm
XRD
WaterCuCl2, NH4OHThiourea Chemical and annealing[63]

Nanoparticle5–8 nm
TEM and XRD
EthanolCu(CH3COO)2 NaOH, methanol, and NH4OHNoAlcothermal [64]

Nanoparticle44 nm (XRD)
80 nm (TEM)
Deionized (DI) waterCu(NO3)2Citric
Acid; ethylene glycol
Sol-gel [65]

Nanorod Diameter: 50–100 nm
Length: microns
2-PropanolCu(NO3)2NoSolvothermal [50]
NanosheetWidth: 1-2 mm; thickness: 20 nmEthanol

Nanoparticle22 nmDeionized waterCuSO4Ascorbic acid
NaBH4
Chemical reduction [66]
10 nmEthylene glycolPVP

Flower-like 400~600 nmDeionized WaterCu(CH3COO)2NoHydrolyzing method[67]

Nanoparticle3–9 nm (XRD)
11 nm (TEM)
Alcohol Cu(CH3COO)2NoAlcohol thermal[68]

NanoplateletLengths: 4-5 μm; thickness: 65–80 nm (SEM)1-Butyl-3-methyl 
imidazolium tetrafluoroborate 
BMIM]BF
Cu(NO3)2
NaOH
([BMIM]BF4).
It serves both as solvent and as surfactant
Hydrothermal[69]

NanoneedleLength ~100 nm 
Diameter 10–20 nm (TEM)
WaterCu(NO3)2
NaOH
Oleic acid
Sodium oleate
Coprecipitation[70]

NanobeltLength: 2.5–5 μm
Width: 150–200 nm
Distilled water CuSO4
NaOH
H2O2Hydrothermal[71]

Nanoparticle100 nm (SEM)Ethylene glycolCu(CH3COO)2 ureaNoMicrowave [72]