Research Article

Piezoelectric Energy Generation from Vehicle Traffic with Technoeconomic Analysis

Algorithm 1

MATLAB script.
syms m x t y
rho=2323;
h=0.3048;
E=2756010∧6;
mu=0.15;
B=8;
K=136;
N=20;
Massofvehicle=3200;
coeffofrollingfriction=0.015;
Contacttires=2;
areaofcontact=0.0025;
v=(1005)/18; %assumng 100kmph
b0=.508/2;
a0=0.254/2;
d0=1.22/2;
q0= MassofvehiclecoeffofrollingfrictionContacttires/(areaofcontactv)%-7.7810∧3;
 %distributed load of vehicle
y1=3.2;
y2=4.8;
%piezo
d31=-27410∧(-12); %V/m
hc=0.055;
lp=0.14;
bp=0.14;
hp=0.01;
e33=30.0610∧(-9); % F/m
S11=16.510∧(-12); %m∧2/N
S12=-5.7410∧(-12); %m∧2/N
xp=8;%tenative
yp=0.5;%centre of piezo
R =80010∧3;
xp1=xp-0.5lp;
xp2=xp+0.5lp;
yp1=yp-0.5bp;
yp2=yp+0.5bp;
%pavement structuring
D=Eh/(12(1-mu∧2));
am=msym(pi)/B;
a1=sym(pi)/9.8814; %supposed to be B
vc=sqrt((2(a1∧2)D+2sqrt((a1∧4)D∧2+KD))/(rhoh));
Lm=sqrt(am∧4+K/D);
Bm=((v∧2)rhoh/(2D))-am∧2;
Tm=sqrt(0.5(Lm-Bm));
Pm=sqrt(0.5(Lm+Bm));
v0=sqrt((4Dam∧2)/(rhoh));
o=(2v∧2-v0∧2)/(2sqrt((vc∧2-v∧2)(v∧2+vc∧2-v0∧2))); %gamma m
deg=180/pi;
cm1=((osin(a0Pm)cosh(a0Tm)+cos(a0Pm)sinh(a0Tm)));
sm1=(-ocos(a0Pm)sinh(a0Tm)+sin(a0Pm)cosh(a0Tm));
cm2=((exp(-a0Tm))(osin(a0Pm)-cos(a0Pm)));
sm2=((-exp(-a0Tm))(ocos(a0Pm)+sin(a0Pm)));
CM2=((exp(-d0Tm))(cm1cos(d0Pm)+sm1sin(d0Pm)));
SM2=((exp(-d0Tm))(sm1cos(d0Pm)-cm1sin(d0Pm)));
CM1=((exp(d0Tm))(cm1cos(d0Pm)-sm1sin(d0Pm))+CM2);
SM1=((exp(d0Tm))(cm1sin(d0Pm)+sm1sin(d0Pm))+SM2);
CM3=(cm2cos(d0Pm)cosh(d0Tm)+sm2sin(d0Pm)sinh(d0Tm));
CM4=(-cm2cos(d0Pm)sinh(d0Tm)-sm2sin(d0Pm)cosh(d0Tm));
SM3=(cm2sin(d0Pm)cosh(d0Tm)-sm2cos(d0Pm)sinh(d0Tm));
SM4=(sm2cos(d0Pm)cosh(d0Tm)-cm2sin(d0Pm)sinh(d0Tm));
O=abs(x-vt);
gm1=((cosh(OTm))(CM3cos(OPm)+SM3sin(OPm)));
gm2=((sinh(OTm))(CM4cos(OPm)+SM4sin(OPm)));
gm=(gm1+gm2);
wm=((4q0sin(amb0)(sin(amy1)+sin(amy2)))/(mpi(K+Dam∧4)));
%case 1 when O-d0>a0
  wm1=(wm(exp(-OTm))(CM1cos(OPm)+SM1sin(OPm)));
%case 2 when |O-d0|<a0
wm2=(wm(1+(exp(-OTm))(CM2cos(OPm)+SM2sin(OPm))+gm));
%case 3 when (O-d0<-a0)
wm3=(wm(2CM2cos(OPm)cosh(OTm)-2SM2sin(OPm)sinh(OTm)));
C0=(e33-(1/(S11+S12))2d31∧2)lpbp/hp;
 syms m
 WM1=(symsum(wm1sin(amy), m, 1, N));
 WM2=(symsum(wm2sin(amy), m, 1, N));
 WM3=(symsum(wm3sin(amy), m, 1, N));
 WM=WM1+WM2+WM3;
 WM=vpa(WM,3);
 gx=gradient(WM,x);
 gx=vpa(gx,3)
gy1=gradient(gy);
gy1=vpa(gy1,3);%deba2w(x,y,t)wrt y
 fun=vpa((gx1+gy1),3);
 term=vpa(int(fun,x),3); %first integral
 initial=subs(term,x,xp1); %limits
 final=subs(term,x,xp2);
 term=vpa((final-initial),3);
 TERM=vpa(int(term,y),3);
 initial1=subs(TERM,y,yp1); %limits
 final1=subs(TERM,y,yp2);
 TERM=vpa((final1-initial1),3);
 Q=-((d31hc)/(S11+S12))TERM; %fill up the two integrals
 ex=-hcgx1;
 ex=vpa(ex,3);
 ey=-hcgy1;
 ey=vpa(ey,3);
e31=d31/(S11+S12);
V= e31lpbp(ex+ey)/C0;
% for y=8 t=8/30
V=subs(V,y,8);
V=subs(V,t,8/30);
V=subs(V,x,1);
V=vpa(V,2)
AA=int((Qexp(t/RC0)),t);
Vt=(Q/C0)-((1/RC0∧2)(exp(-t/(RC0)))(AA));
Vt1=vpa(Vt,2)
Vt1=subs(Vt1,t,8/30)