Table of Contents
Advances in Artificial Intelligence
Volume 2010 (2010), Article ID 175603, 15 pages
http://dx.doi.org/10.1155/2010/175603
Research Article

Multibandwidth Kernel-Based Object Tracking

Department of Electrical and Robotics Engineering, Shahrood University of Technology, Shahrood, Iran

Received 1 August 2009; Revised 2 December 2009; Accepted 20 April 2010

Academic Editor: Ce Zhu

Copyright © 2010 Aras Dargazany et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Georgescu, I. Shimshoni, and P. Meer, “Mean shift based clustering in high dimensions: a texture classification example,” in Proceedings of the 9th IEEE International Conference on Computer Vision, pp. 456–463, Nice, France, October 2003. View at Scopus
  2. D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-based object tracking,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 5, pp. 564–577, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. R. T. Collins, “Mean-shift blob tracking through scale space,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '03), pp. 234–240, Madison, Wis, USA, June 2003. View at Scopus
  4. A. Elgammal, R. Duraiswami, and L. S. Davis, “Probabilistic tracking in joint feature-spatial spaces,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '03), pp. 781–788, Madison, Wis, USA, June 2003. View at Scopus
  5. G. D. Hager, M. Dewan, and C. V. Stewart, “Multiple kernel tracking with SSD,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '04), pp. 790–797, Washington, DC, USA, July 2004. View at Scopus
  6. H. Wang and D. Suter, “MDPE: a very robust estimator for model fitting and range image segmentation,” International Journal of Computer Vision, vol. 59, no. 2, pp. 139–166, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Yang, R. Duraiswami, and L. Davis, “Efficient mean-shift tracking via a new similarity measure,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '05), pp. 176–183, San Diego, Calif, USA, June 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Fukunaga and L. D. Hostetler, “The estimation of the gradient of a density function, with application in pattern recognition,” IEEE Transactions on Information Theory, vol. 21, no. 1, pp. 32–40, 1975. View at Google Scholar · View at Scopus
  9. Y. Cheng, “Mean shift, mode seeking, and clustering,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 17, no. 8, pp. 790–799, 1995. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Comaniciu and P. Meer, “Mean shift: a robust approach toward feature space analysis,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 5, pp. 603–619, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Fashing and C. Tomasi, “Mean shift is a bound optimization,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 3, pp. 471–474, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. S. K. Zhou, R. Chellappa, and B. Moghaddam, “Visual tracking and recognition using appearance-adaptive models in particle filters,” IEEE Transactions on Image Processing, vol. 13, no. 11, pp. 1491–1506, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. É. Arnaud, É. Mémin, and B. Cernuschi-Frías, “Conditional filters for image sequence-based tracking—application to point tracking,” IEEE Transactions on Image Processing, vol. 14, no. 1, pp. 63–79, 2005. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  14. Z. Zivkovic and B. Kröse, “An EM-like algorithm for color-histogram-based object tracking,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '04), pp. 798–803, Washington, DC, USA, July 2004. View at Scopus
  15. Z. Fan, Y. Wu, and M. Yang, “Multiple collaborative kernel tracking,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '05), pp. 502–509, San Diego, Calif, USA, June 2005. View at Scopus
  16. P. van Laarhoven and E. Aarts, Simulated Annealing: Theory and Applications, Springer, New York, NY, USA, 1987.
  17. R. M. Neal, “Annealed importance sampling,” Statistics and Computing, vol. 11, no. 2, pp. 125–139, 2001. View at Publisher · View at Google Scholar · View at MathSciNet
  18. J. Deutscher and I. Reid, “Articulated body motion capture by stochastic search,” International Journal of Computer Vision, vol. 61, no. 2, pp. 185–205, 2005. View at Publisher · View at Google Scholar
  19. J. L. Bentley, “Multidimensional binary search trees used for associative searching,” Communications of the ACM, vol. 18, no. 9, pp. 509–517, 1975. View at Publisher · View at Google Scholar
  20. K. Zhang, M. Tang, and J. T. Kwok, “Applying neighborhood consistency for fast clustering and kernel density estimation,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '05), pp. 1001–1007, San Diego, Calif, USA, June 2005.
  21. C. Yang, R. Duraiswami, D. DeMenthon, and L. Davis, “Mean-shift analysis using quasi-newton methods,” in Proceedings of the International Conference on Image Processing (ICIP '03), pp. 447–450, Barcelona, Spain, September 2003.
  22. L. Xu and M. I. Jordan, “On convergence properties of the EM algorithm for Gaussian mixtures,” Neural Computation, vol. 8, no. 1, pp. 129–151, 1996. View at Google Scholar
  23. L. E. Ortiz and L. P. Kaelbling, “Accelerating EM: an empirical study,” in Proceedings of the 15th Annual Conference on Uncertainty in Artificial Intelligence, pp. 512–521, Stockholm, Sweden, 1999.
  24. R. Salakhutdinov and S. Roweis, “Adaptive overrelaxed bound optimization methods,” in Proceedings of the 20th International Conference on Machine Learning, pp. 664–671, Washington, DC, USA, August 2003.
  25. C. Shen, M. J. Brooks, and A. van den Hengel, “Fast global kernel density mode seeking with application to localisation and tracking,” in Proceedings IEEE International Conference on Computer Vision, vol. 2, pp. 1516–1523, Beijing, China, October 2005.
  26. D. Comaniciu, “An algorithm for data-driven bandwidth selection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 2, pp. 281–288, 2003. View at Publisher · View at Google Scholar
  27. M. C. Jones, J. S. Marron, and S. J. Sheather, “A brief survey of bandwidth selection for density estimation,” Journal of the American Statistical Association, vol. 91, no. 433, pp. 401–407, 1996. View at Google Scholar
  28. W. Härdle, M. Müller, S. Sperlich, and A. Werwatz, Nonparametric and Semiparametric Models, Springer Series in Statistics, Springer, New York, NY, USA, 2004.
  29. C. Yang, R. Duraiswami, N. A. Gumerov, and L. Davis, “Improved fast gauss transform and efficient kernel density estimation,” in Proceedings of the 9th IEEE International Conference on Computer Vision, pp. 464–471, Nice, France, October 2003.
  30. P. Hall, M. C. Minnotte, and C. Zhang, “Bump hunting with non-Gaussian kernels,” Annals of Statistics, vol. 32, no. 5, pp. 2124–2141, 2004. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  31. P. Chaudhuri and J. S. Marron, “Scale space view of curve estimation,” Annals of Statistics, vol. 28, no. 2, pp. 408–428, 2000. View at Google Scholar
  32. T. Lindeberg, Scale-Space Theory in Computer Vision, Kluwer, Norwell, Mass, USA, 1994.
  33. A. Blake and A. Zisserman, Visual Reconstruction, MIT Press, Cambridge, Mass, USA, 1987.
  34. D. Comaniciu, “Nonparametric information fusion for motion estimation,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '03), vol. 1, pp. 59–66, Madison, Wis, USA, June 2003.
  35. M. Carreira-Perpiñán and C. Williams, “On the number of modes of a Gaussian mixture,” Tech. Rep. EDI-INF-RR-0159, School Informatics, University of Edinburgh, Edinburgh, UK, February 2003, http://www.inf.ed.ac.uk/publications/report/0159.html. View at Google Scholar
  36. C. Shen and M. J. Brooks, “Adaptive over-relaxed mean shift,” in Proceedings of the 8th International Symposium on Signal Processing and Its Applications, Sydney, Australia, August 2005.
  37. S. Hettich and S. D. Bay, “The UCI KDD archive,” Tech. Rep., Department of Information and Computer Science, University of California, Irvine, Calif, USA, 1999, http://kdd.ics.uci.edu/. View at Google Scholar
  38. T.-L. Liu and H.-T. Chen, “Real-time tracking using trust-region methods,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 3, pp. 397–402, 2004. View at Publisher · View at Google Scholar · View at PubMed
  39. D. C. Liu and J. Nocedal, “On the limited memory BFGS method for large scale optimization,” Mathematical Programming, vol. 45, no. 1–3, pp. 503–528, 1989. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  40. T. Kailath, “The divergence and Bhattacharyya distance measures in signal selection,” IEEE Transactions on Communication Technology, vol. 15, no. 1, pp. 52–60, 1967. View at Google Scholar
  41. S. Kullback and R. A. Leibler, “On information and sufficiency,” Annals of Mathematical Statistics, vol. 22, no. 1, pp. 79–86, 1951. View at Google Scholar
  42. K. Okuma, A. Taleghani, N. de Freitas, J. J. Little, and D. G. Lowe, “A boosted particle filter: multitarget detection and tracking,” in Proceedings of the 8th European Conference on Computer Vision, vol. 1, pp. 28–39, Prague, Czech Republic, May 2004.
  43. H. Wang and D. Suter, “False-peaks-avoiding mean shift method for unsupervised peak-valley sliding image segmentation,” in Proceedings of the 7th International Conference on Digital Image Computing: Techniques and Applications (DICTA '03), pp. 581–590, Sydney, Australia, December 2003.
  44. A. T. Kalai and S. Vempala, “Simulated annealing for convex optimization,” Mathematics of Operations Research, vol. 31, no. 2, pp. 253–266, 2006. View at Publisher · View at Google Scholar · View at MathSciNet