Table of Contents
Advances in Artificial Intelligence
Volume 2010, Article ID 924529, 15 pages
Review Article

From Experimental Approaches to Computational Techniques: A Review on the Prediction of Protein-Protein Interactions

1Faculty of Computing and Engineering, University of Ulster Jordanstown Campus, Shore Road, Newtownabbey, Co. Antrim BT37 0QB, UK
2Laboratory of Cardiovascular Research, Public Research Centre for Health (CRP-Santé), 120, route d'ArlonL-1150, Luxembourg

Received 15 September 2009; Revised 13 November 2009; Accepted 6 January 2010

Academic Editor: Daniel Berrar

Copyright © 2010 Fiona Browne et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


A crucial step towards understanding the properties of cellular systems in organisms is to map their network of protein-protein interactions (PPIs) on a proteomic-wide scale completely and as accurately as possible. Uncovering the diverse function of proteins and their interactions within the cell may improve our understanding of disease and provide a basis for the development of novel therapeutic approaches. The development of large-scale high-throughput experiments has resulted in the production of a large volume of data which has aided in the uncovering of PPIs. However, these data are often erroneous and limited in interactome coverage. Therefore, additional experimental and computational methods are required to accelerate the discovery of PPIs. This paper provides a review on the prediction of PPIs addressing key prediction principles and highlighting the common experimental and computational techniques currently employed to infer PPI networks along with relevant studies in the area.