Table of Contents
Advances in Artificial Intelligence
Volume 2013, Article ID 256524, 11 pages
http://dx.doi.org/10.1155/2013/256524
Research Article

A Comparative Study between Optimization and Market-Based Approaches to Multi-Robot Task Allocation

1Robotics and Autonomous Systems (RAS) Research Group, German University in Cairo, New Cairo, Egypt
2Engineering Science Department, Suez University, Suez, Egypt

Received 31 May 2013; Revised 29 August 2013; Accepted 14 September 2013

Academic Editor: Jun He

Copyright © 2013 Mohamed Badreldin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. E. Parker, “Multiple mobile robot systems,” in Springer Handbook of Robotics, pp. 921–941, Springer, Berlin, Germany, 2008. View at Google Scholar
  2. Y. Han, D. Li, J. Chen, X. Yang, Y. Hu, and G. Zhang, “A multi-robots task allocation algorithm based on relevance and ability with group collaboration,” International Journal of Intelligent Engineering and Systems, vol. 3, no. 2, pp. 33–41, 2010. View at Google Scholar · View at Scopus
  3. B. Gerkey, On multi-robot task allocation [Ph.D. dissertation], Faculty of the Graduate School, University of Southern California, 2003.
  4. T. Bektas, “The multiple traveling salesman problem: an overview of formulations and solution procedures,” Omega, vol. 34, no. 3, pp. 209–219, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Mosteo and L. Montano, “Simulated annealing for multi-robot hierarchical task allocation with minmax objective,” in Proceedings of the Workshop on Network Robot Systems: Toward Intelligent Robotic System Integrated with Environments (IROS '06), 2006.
  6. Z. Jian, P. Zhihong, and L. Bo, “Multi-task allocation of ucavs considering time cost and hard time window constraints,” in Proceedings of the 31st Chinese Control Conference (CCC '12), pp. 2448–2452, 2012.
  7. R. M. Zlot, An auction-based approach to complex task allocation for multirobot teams [Ph.D. dissertation], Carnegie Mellon University, 2006.
  8. P. Oberlin, S. Rathinam, and S. Darbha, “Today's traveling salesman problem: heterogeneous, multiple depot, multiple UAV routing problem,” IEEE Robotics and Automation Magazine, vol. 17, no. 4, pp. 70–77, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Sariel-Talay, T. R. Balch, and N. Erdogan, “Multiple traveling robot problem: a solution based on dynamic task selection and robust execution,” IEEE/ASME Transactions on Mechatronics, vol. 14, no. 2, pp. 198–206, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Horst, P. Pardalos, and N. van Thoai, Introduction to Global Optimization, Nonconvex Optimization and Its Applications, Springer, Berlin, Germany, 1995.
  11. N. Atay and B. Bayazit, “Mixed-integer linear programming solution to multi-robot task allocation problem,” Tech. Rep. WUCSE-2006-54, Washington University, St. Louis, Mo, USA, 2006. View at Google Scholar
  12. M. A. Darrah, W. M. Niland, and B. M. Stolarik, “Multiple UAV dynamic task allocation using mixed integer linear programming in a SEAD mission,” in InfoTech at Aerospace: Advancing Contemporary Aerospace Technologies and Their Integration, pp. 2324–2334, American Institute of Aeronautics and Astronautics, 2005. View at Google Scholar · View at Scopus
  13. A. R. Mosteo and L. Montano, “Simulated annealing for multirobot hierarchical task allocation with flexible constraints and objective functions,” in Proceedings of the Workshop on Network Robot Systems: Toward Intelligent Robotic Systems Integrated with Environments (IROS '06), 2006.
  14. A. R. Mosteo, Multi-robot task allocation for service robotics: from unlimited to limited communication range [Ph.D. dissertation], Universidad de Zaragoza, 2010.
  15. D. Juedes, F. Drews, L. Welch, and D. Fleeman, “Heuristic resource allocation algorithms for maximizing allowable workload in dynamic, distributed real-time systems,” in Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS '04), pp. 1631–1638, April 2004. View at Scopus
  16. W. Kmiecik, M. Wojcikowski, L. Koszalka, and A. Kasprzak, “Task allocation in mesh connected processors with local search meta-heuristic algorithms,” in Intelligent Information and Database Systems, N. Nguyen, M. Le, and J. Swiatek, Eds., vol. 5991 of Lecture Notes in Computer Science, pp. 215–224, Springer, Berlin, Germany, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. P. J. Shea, K. Alexander, and J. Peterson, “Group tracking using genetic algorithms,” in Proceedings of the 6th International Conference of Information Fusion, 2003.
  18. E. G. Jones, M. B. Dias, and A. Stentz, “Time-extended multi-robot coordination for domains with intra-path constraints,” Autonomous Robots, vol. 30, no. 1, pp. 41–56, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Wang, Y. Gu, and X. Li, “Multi-robot task allocation based on ant colony algorithm,” Journal of Computers, vol. 7, no. 9, pp. 2160–2167, 2012. View at Google Scholar
  20. Y. Ding, Y. He, and J. Jiang, “Multi-robot cooperation method based on the ant algorithm,” in Proceedings of the IEEE Swarm Intelligence Symposium (SIS '03), pp. 14–18, 2003.
  21. W.-H. Chen and C.-S. Lin, “A hybrid heuristic to solve a task allocation problem,” Computers and Operations Research, vol. 27, no. 3, pp. 287–303, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. D. K. Liu and A. K. Kulatunga, “Simultaneous planning and scheduling for multi-autonomous vehicles,” in Evolutionary Scheduling, pp. 437–464, Springer, Berlin, Germany, 2007. View at Google Scholar
  23. M. B. Dias, R. Zlot, N. Kalra, and A. Stentz, “Market-based multirobot coordination: a survey and analysis,” Proceedings of the IEEE, vol. 94, no. 7, pp. 1257–1270, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. B. P. Gerkey and M. J. Matarić, “Sold!: auction methods for multirobot coordination,” IEEE Transactions on Robotics and Automation, vol. 18, no. 5, pp. 758–768, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Stentz, M. B. Dias, R. Zlot, and N. Kalra, “Market-based approaches for coordination of multi-robot teams at different granularities of interaction,” in Proceedings of the 10th International Conference on Robotics and Remote Systems for Hazardous Environments, pp. 145–151, Robotics Institute, Carnegie Mellon University, March 2004. View at Scopus
  26. B. P. Gerkey and M. J. Mataric, “A market-based formulation of sensor-actuator network coordination,” in Proceedings of the AAAI Spring Symposium on Intelligent Embedded and Distributed Systems, 2002.
  27. B. P. Gerkey and M. J. Matarić, “A formal analysis and taxonomy of task allocation in multi-robot systems,” International Journal of Robotics Research, vol. 23, no. 9, pp. 939–954, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Zlotkin and J. S. Rosenschein, “A domain theory for task oriented negotiation,” in Proceedings of the 13th International Joint Conference on Artificial Intelligence, 1993.
  29. T. Sandholm, “An implementation of the contract net protocol based on marginal cost calculations,” in Proceedings of the 11th National Conference on Artificial Intelligence, pp. 256–262, July 1993. View at Scopus
  30. T. Sandholm and V. Lesser, “Issues in automated negotiation and electronic commerce: extending the contract net framework,” in Proceedings of the 1st International Conference on Multi-Agent Systems (ICMAS '95), 1995.
  31. A. Chavez, A. Moukas, and P. Maes, “Challenger: a multi-agent system for distributed resource allocation,” in Proceedings of the 1st International Conference on Autonomous Agents, pp. 323–331, February 1997. View at Scopus
  32. M. P. Wellman and P. R. Wurman, “Market-aware agents for a multiagent world,” Robotics and Autonomous Systems, vol. 24, no. 3-4, pp. 115–125, 1998. View at Google Scholar · View at Scopus
  33. H. Kose, U. Tatlidede, C. Mericli, K. Kaplan, and H. L. Akin, “Qlearning-based market-driven multi-agent collaboration in robot soccer,” in Proceedings of the Turkish Symposium on Artifcial Intelligence and Neural Networks, pp. 219–228, 2004.
  34. T. Sandholm and S. Suri, “Improved algorithms for optimal winner determination in combinatorial auctions and generalizations,” in Proceedings of the 17th National Conference on Artificial Intelligence, pp. 90–97, 2000.
  35. A. Elmogy, Market-based framework for mobile surveillance systems [Ph.D. dissertation], University of Waterloo, 2010.
  36. A. M. Khamis, A. M. Elmogy, and F. O. Karray, “Complex task allocation in mobile surveillance systems,” Journal of Intelligent and Robotic Systems, vol. 64, no. 1, pp. 33–55, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. M. B. Dias, A new paradigm for robust and efficient multirobot coordination in dynamic environments [Ph.D. dissertation], Robotics Institute, Carnegie Mellon University, 2004.
  38. M. Golfarelli, D. Maio, and S. Rizzi, “A task-swap negotiation protocol based on the contract net paradigm,” Tech. Rep. 005-97, CSITE (Research Center for Informatics and Telecommunication Systems), 1997. View at Google Scholar
  39. R. G. Smith, “The contract net protocol: high-level communication and control in a distributed problem solver,” IEEE Transactions on Computers, vol. 29, no. 12, pp. 1104–1113, 1980. View at Google Scholar · View at Scopus
  40. A. Hussein, A market-based approach to multi-robot task allocation problem [M.S. thesis], German University in Cairo, New Cairo, Egypt, 2013.