Table of Contents
Advances in Andrology
Volume 2014, Article ID 808906, 10 pages
http://dx.doi.org/10.1155/2014/808906
Review Article

Functional Importance of 1α,25(OH)2-Vitamin D3 and the Identification of Its Nongenomic and Genomic Signaling Pathways in the Testis

Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Bairro Trindade, CP 5069, 88040-970 Florianópolis, SC, Brazil

Received 11 December 2013; Accepted 1 May 2014; Published 29 May 2014

Academic Editor: Nafisa H. Balasinor

Copyright © 2014 Fátima Regina Mena Barreto Silva. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. W. Norman, Encyclopedia of Hormones: Vitamin D, Elsevier Science, New York, NY, USA, 2003.
  2. R. Bouillon, W. H. Okamura, and A. W. Norman, “Structure-function relationships in the vitamin D endocrine system,” Endocrine Reviews, vol. 16, no. 2, pp. 200–256, 1995. View at Google Scholar · View at Scopus
  3. A. W. Norman, “From vitamin D to hormone D: fundamentals of the vitamin D endocrine system essential for good health,” American Journal of Clinical Nutrition, vol. 88, no. 2, pp. 491S–499S, 2008. View at Google Scholar · View at Scopus
  4. H. Goldblatt and K. N. Soames, “A study of rats on a normal diet irradiated daily by the mercury vapor quartz lamp or kept in darkness,” Biochemical Journal, vol. 17, pp. 294–297, 1923. View at Google Scholar
  5. A. W. Norman, “Minireview: vitamin D receptor: new assignments for an already busy receptor,” Endocrinology, vol. 147, no. 12, pp. 5542–5548, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. A. W. Norman and P. A. Roberts, “Steroid competition assay for determination of 25-hydroxyvitamin D and 24,25-dihydroxyvitamin D,” Methods in Enzymology, vol. 67, pp. 473–478, 1980. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Bouillon, G. Carmeliet, L. Verlinden et al., “Vitamin D and human health: lessons from vitamin D receptor null mice,” Endocrine Reviews, vol. 29, no. 6, pp. 726–776, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. M. F. Holick, N. C. Binkley, H. A. Bischoff-Ferrari et al., “Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline,” Journal of Clinical Endocrinology and Metabolism, vol. 96, no. 7, pp. 1911–1930, 2011. View at Publisher · View at Google Scholar
  9. G. Ponchon, A. L. Kennan, and H. F. DeLuca, “‘Activation’ of vitamin D by the liver,” The Journal of Clinical Investigation, vol. 48, no. 11, pp. 2032–2037, 1969. View at Google Scholar · View at Scopus
  10. D. E. Prosser and G. Jones, “Enzymes involved in the activation and inactivation of vitamin D,” Trends in Biochemical Sciences, vol. 29, no. 12, pp. 664–673, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. N. E. Cooke and J. G. Haddad, “Vitamin D binding protein (Gc-globulin),” Endocrine Reviews, vol. 10, no. 3, pp. 294–307, 1989. View at Google Scholar · View at Scopus
  12. J. E. Bishop, E. D. Collins, W. H. Okamura, and A. W. Norman, “Profile of ligand specificity of the vitamin D binding protein for 1α,25- dihydroxyvitamin D3 and its analogs,” Journal of Bone and Mineral Research, vol. 9, no. 8, pp. 1277–1288, 1994. View at Google Scholar · View at Scopus
  13. A. W. Norman, S. Ishizuka, and W. H. Okamura, “Ligands for the vitamin D endocrine system: different shapes function as agonists and antagonists for genomic and rapid response receptors or as a ligand for the plasma vitamin D binding protein,” The Journal of Steroid Biochemistry and Molecular Biology, vol. 76, no. 1-5, pp. 49–59, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. A. W. Norman, C. J. Olivera, F. R. M. B. Silva, and J. E. Bishop, “A specific binding protein/receptor for 1α,25-dihydroxyvitamin D3 is present in an intestinal caveolae membrane fraction,” Biochemical and Biophysical Research Communications, vol. 298, no. 3, pp. 414–419, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. A. W. Norman and F. R. M. B. Silva, “Structure function studies: identification of vitamin D analogs for the ligand-binding domains of important proteins in the vitamin D-endocrine system,” Reviews in Endocrine and Metabolic Disorders, vol. 2, no. 2, pp. 229–238, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. F. K. Habib, S. Q. Maddy, and K. J. Gelly, “Characterisation of receptors for 1,25-dihydroxyvitamin D3 in the human testis,” Journal of Steroid Biochemistry, vol. 35, no. 2, pp. 195–199, 1990. View at Publisher · View at Google Scholar · View at Scopus
  17. J. A. Johnson, J. P. Grande, P. C. Roche, and R. Kumar, “Immunohistochemical detection and distribution of the 1,25-dihydroxyvitamin D3 receptor in rat reproductive tissues,” Histochemistry and Cell Biology, vol. 105, pp. 7–15, 1996. View at Google Scholar
  18. K. Kinuta, H. Tanaka, T. Moriwake, K. Aya, S. Kato, and Y. Seino, “Vitamin D is an important factor in estrogen biosynthesis of both female and male gonads,” Endocrinology, vol. 141, no. 4, pp. 1317–1324, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Foresta, G. Strapazzon, L. de Toni et al., “Bone mineral density and testicular failure: evidence for a role of vitamin D 25-hydroxylase in human testis,” Journal of Clinical Endocrinology and Metabolism, vol. 96, no. 4, pp. E646–E652, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Foresta, R. Selice, A. di Mambro, and G. Strapazzon, “Testiculopathy and vitamin D insufficiency,” The Lancet, vol. 376, pp. 1301–1301, 2010. View at Google Scholar
  21. M. R. Haussler and A. W. Norman, “Chromosomal receptor for a vitamin D metabolite,” Proceedings of the National Academy of Sciences of the United States of America, vol. 62, no. 1, pp. 155–162, 1969. View at Google Scholar · View at Scopus
  22. M. T. Mizwicki and A. W. Norman, “The vitamin D sterol-vitamin D receptor ensemble model offers unique insights into both genomic and rapid-response signaling,” Science Signaling, vol. 2, no. 75, article re4, pp. 1–14, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. G. K. Whitfield, P. W. Jurutka, C. A. Haussler et al., “Nuclear vitamin D receptor: structure-function, molecular control of gene transcription, and novel bioactions,” in Vitamin D, D. Feldman, J. W. Pike, and F. H. Glorieux, Eds., pp. 219–261, Elsevier Academic Press, Oxford, UK, 2nd edition, 2005. View at Google Scholar
  24. M. R. Haussler, P. W. Jurutka, M. Mizwicki, and A. W. Norman, “Vitamin D receptor (VDR)-mediated actions of 1α,25(OH)2 vitamin D3: genomic and non-genomic mechanisms,” Best Practice & Research: Clinical Endocrinology & Metabolism, vol. 25, no. 4, pp. 543–559, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Merke, W. Kreusser, B. Bier, and E. Ritz, “Demonstration and characterisation of a testicular receptor for 1,25-dihydroxycholecalciferol in the rat,” European Journal of Biochemistry, vol. 130, no. 2, pp. 303–308, 1983. View at Google Scholar · View at Scopus
  26. M. R. Walters, “1,25-dihydroxyvitamin D3 receptors in the seminiferous tubules of the rat testis increase at puberty,” Endocrinology, vol. 114, no. 6, pp. 2167–2174, 1984. View at Google Scholar · View at Scopus
  27. J. Merke, U. Hugel, and E. Ritz, “Nuclear testicular 1,25-dihydroxyvitamin D3 receptors in Sertoli cells and seminiferous tubules of adult rodents,” Biochemical and Biophysical Research Communications, vol. 127, no. 1, pp. 303–309, 1985. View at Google Scholar · View at Scopus
  28. G. Schleicher, T. H. Privette, and W. E. Stumpf, “Distribution of soltriol [1,25(OH)2-vitamin D3] binding sites in male sex organs of the mouse: an autoradiographic study,” Journal of Histochemistry and Cytochemistry, vol. 37, no. 7, pp. 1083–1086, 1989. View at Google Scholar · View at Scopus
  29. A. R. Mahmoudi, A. H. Zarnani, and M. Jeddi-Tehrani, “Distribution of vitamin D receptor and 1α-hydroxylase in male mouse reproductive tract,” Reproductive Sciences, vol. 20, no. 4, pp. 426–436, 2013. View at Publisher · View at Google Scholar
  30. A. K. Nangia, J. L. Butcher, B. R. Konety, B. N. Vietmeier, and R. H. Getzenberg, “Association of vitamin D receptors with the nuclear matrix of human and rat genitourinary tissues,” The Journal of Steroid Biochemistry and Molecular Biology, vol. 66, no. 4, pp. 241–246, 1998. View at Publisher · View at Google Scholar · View at Scopus
  31. S. T. Corbett, O. Hill, and A. K. Nangia, “Vitamin D receptor found in human sperm,” Urology, vol. 68, no. 6, pp. 1345–1349, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Aquila, C. Guido, I. Perrotta, S. Tripepi, A. Nastro, and S. Andò, “Human sperm anatomy: ultrastructural localization of 1α,25-dihydroxyvitamin D3 receptor and its possible role in the human male gamete,” Journal of Anatomy, vol. 213, no. 5, pp. 555–564, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Aquila, C. Guido, E. Middea et al., “Human male gamete endocrinology: 1alpha, 25-dihydroxyvitamin D3 (1,25(OH)2D3) regulates different aspects of human sperm biology and metabolism,” Reproductive Biology and Endocrinology, vol. 7, article 140, pp. 1–13, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Blomberg Jensen, J. E. Nielsen, A. Jørgensen et al., “Vitamin D receptor and vitamin D metabolizing enzymes are expressed in the human male reproductive tract,” Human Reproduction, vol. 25, no. 5, pp. 1303–1311, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Blomberg-Jensen, A. Jørgensen, J. E. Nielsen et al., “Expression of the vitamin D metabolizing enzyme CYP24A1 at the annulus of human spermatozoa may serve as a novel marker of semen quality,” International Journal of Andrology, vol. 35, no. 4, pp. 499–510, 2012. View at Publisher · View at Google Scholar
  36. A. W. Norman, Vitamin D: The Calcium Homeostatic Steroid Hormone, Academic Press, New York, NY, USA, 1979.
  37. W. H. Okamura, M. M. Midland, M. W. Hammond et al., “Chemistry and conformation of vitamin D molecules,” The Journal of Steroid Biochemistry and Molecular Biology, vol. 53, no. 1–6, pp. 603–613, 1995. View at Publisher · View at Google Scholar · View at Scopus
  38. E. J. Friedlander, H. L. Henry, and A. W. Norman, “Studies on the mode of action of calciferol. Effects of dietary calcium and phosphorus on the relationship between the 25-hydroxyvitamin D3-1α-hydroxylase and production of chick intestinal calcium binding protein,” The Journal of Biological Chemistry, vol. 252, no. 23, pp. 8677–8683, 1977. View at Google Scholar · View at Scopus
  39. M. R. Walters, D. L. Cuneo, and A. P. Jamison, “Possible significance of new target tissues for 1,25-dihydroxyvitamin D3,” Journal of Steroid Biochemistry, vol. 19, no. 1, pp. 913–920, 1983. View at Google Scholar · View at Scopus
  40. M. R. Walters, B. C. Osmundsen, R. M. Carter, P. C. Riggle, and J. R. Jeter, “Accumulating evidence for a physiological role for 1,25-dihydroxyvitamin D3 in new tragets: testis and heart,” in Vitamin D: Chemical, Biochemical, and Clinical Update, A. W. Norman, K. Schaefer, H. G. Grigoleit, and D. V. Herrath, Eds., pp. 137–142, de Gruyter, New York, NY, USA, 1985. View at Google Scholar
  41. V. L. Akerstrom and M. R. Walters, “Physiological effects of 1,25-dihydroxyvitamin D3 in TM4 sertoli cell line,” American Journal of Physiology—Endocrinology and Metabolism, vol. 262, no. 6, pp. E884–E890, 1992. View at Google Scholar · View at Scopus
  42. N. Inpanbutr, J. D. Reiswig, W. L. Bacon, R. D. Slemons, and A. M. Iacopino, “Effect of vitamin D on testicular CaBP28K expression and serum testosterone in chickens,” Biology of Reproduction, vol. 54, pp. 242–248, 1996. View at Google Scholar
  43. S. E. Bulun, I. M. Rosenthal, A. M. Brodie et al., “Use of tissue-specific promoters in the regulation of aromatase cytochrome P450 gene expression in human testicular and ovarian sex cord tumors, as well as in normal fetal and adult gonads,” Journal of Clinical Endocrinology and Metabolism, vol. 77, no. 6, pp. 1616–1621, 1993. View at Google Scholar
  44. A. V. Krishnan, S. Swami, L. Peng, J. Wang, J. Moreno, and D. Feldman, “Tissue-selective regulation of aromatase expression by calcitriol: implications for breast cancer therapy,” Endocrinology, vol. 151, no. 1, pp. 32–42, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. J. Lundqvist, M. Norlin, and K. Wikvall, “1α,25-dihydroxyvitamin D3 exerts tissue-specific effects on estrogen and androgen metabolism,” Biochimica et Biophysica Acta, vol. 1811, no. 4, pp. 263–270, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. E. Wehr, S. Pilz, B. O. Boehm, W. März, and B. Obermayer-Pietsch, “Association of vitamin D status with serum androgen levels in men,” Clinical Endocrinology, vol. 73, no. 2, pp. 243–248, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Pilz, S. Frisch, H. Koertke et al., “Effect of vitamin D supplementation on testosterone levels in men,” Hormone and Metabolic Research, vol. 43, no. 3, pp. 223–225, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Carreau, “Leydig cell aromatase: from gene to physiological role,” in The Leydig Cell in Health and Disease, A. H. Payne and M. P. Hardy, Eds., pp. 189–195, Human Press, Totowa, NJ, USA, 2007. View at Google Scholar
  49. S. Carreau, H. Bouraïma-Lelong, C. Bois, L. Zanatta, F. R. M. B. Silva, and C. Delalande, “Aromatase, estrogens and testicular germ cell development,” Immunology, Endocrine and Metabolic Agents in Medicinal Chemistry, vol. 11, no. 1, pp. 33–39, 2011. View at Google Scholar · View at Scopus
  50. S. Carreau and R. A. Hess, “Oestrogens and spermatogenesis,” Philosophical Transactions of the Royal Society B, vol. 365, no. 1546, pp. 1517–1535, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. S. Carreau, C. Bois, L. Zanatta, F. R. M. B. Silva, H. Bouraima-Lelong, and C. Delalande, “Estrogen signaling in testicular cells,” Life Sciences, vol. 89, no. 15-16, pp. 584–587, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. K. Golovine, M. Schwerin, and J. Vanselow, “Three different promoters control expression of the aromatase cytochrome P450 gene (Cyp19) in mouse gonads and brain,” Biology of Reproduction, vol. 68, no. 3, pp. 978–984, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. N. Yamada-Mouri, S. Hirata, and J. Kato, “Existence and expression of the untranslated first exon of aromatase mRNA in the rat brain,” The Journal of Steroid Biochemistry and Molecular Biology, vol. 58, no. 2, pp. 163–166, 1996. View at Publisher · View at Google Scholar · View at Scopus
  54. D. Silandre, C. Delalande, P. Durand, and S. Carreau, “Three promoters PII, PI.f, and PI.tr direct the expression of aromatase (cyp19) gene in male rat germ cells,” Journal of Molecular Endocrinology, vol. 39, no. 1-2, pp. 169–181, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Young and M. J. Mcphaul, “A steroidogenic factor-1-binding site and cyclic adenosine 3′,5′- monophosphate response element-like elements are required for the activity of the rat aromatase promoter in rat Leydig tumor cell lines,” Endocrinology, vol. 139, no. 12, pp. 5082–5093, 1998. View at Google Scholar · View at Scopus
  56. M. Lanzino, S. Catalano, C. Genissel et al., “Aromatase messenger RNA is derived from the proximal promoter of the aromatase gene in Leydig, Sertoli, and germ cells of the rat testis,” Biology of Reproduction, vol. 64, no. 5, pp. 1439–1443, 2001. View at Google Scholar · View at Scopus
  57. V. Pezzi, R. Sirianni, A. Chimento et al., “Differential expression of steroidogenic factor-1/adrenal 4 binding protein and liver receptor homolog-1 (LRH-1)/fetoprotein transcription factor in the rat testis: LRH-1 as a potential regulator of testicular aromatase expression,” Endocrinology, vol. 145, no. 5, pp. 2186–2196, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. L. Zanatta, H. Bouraïma-Lelong, C. Delalande, F. R. M. B. Silva, and S. Carreau, “Regulation of aromatase expression by 1α,25(OH)2 vitamin D3 in rat testicular cells,” Reproduction, Fertility and Development, vol. 23, no. 5, pp. 725–735, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. V. G. Pardo, R. Boland, and A. R. de Boland, “1α,25(OH)2-vitamin D3 stimulates intestinal cell p38 MAPK activity and increases c-Fos expression,” International Journal of Biochemistry & Cell Biology, vol. 38, no. 7, pp. 1181–1190, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. I. Nemere, Y. Yoshimoto, and A. W. Norman, “Calcium transport in perfused duodena from normal chicks: enhancement within fourteen minutes of exposure to 1,25-dihydroxyvitamin D3,” Endocrinology, vol. 115, no. 4, pp. 1476–1483, 1984. View at Google Scholar · View at Scopus
  61. J. C. Fleet, “Rapid, membrane-initiated actions of 1,25 dihydroxyvitamin D: what are they and what do they mean?” Journal of Nutrition, vol. 134, no. 12, pp. 3215–3218, 2004. View at Google Scholar · View at Scopus
  62. H. N. Christensen, A. J. Aspen, and E. G. Rice, “Metabolism in the rat of three amino acids lacking alpha-hydrogen,” The Journal of Biological Chemistry, vol. 220, no. 1, pp. 287–294, 1956. View at Google Scholar · View at Scopus
  63. G. G. Guidotti, A. F. Borghetti, and G. Gazzola, “The regulation of amino acid transport in animal cells,” Biochimica et Biophysica Acta, vol. 515, no. 4, pp. 329–366, 1978. View at Google Scholar · View at Scopus
  64. F. R. M. B. Silva and G. F. Wassermann, “Kinetics of FSH stimulation of methylaminoisobutyric acid uptake in Sertoli cells in culture from testes of 15 day-old rats,” Medical Science Research, vol. 27, no. 9, pp. 627–630, 1999. View at Google Scholar · View at Scopus
  65. D. Menegaz, A. Rosso, C. Royer, L. D. Leite, A. R. S. Santos, and F. R. M. B. Silva, “Role of 1α,25(OH)2 vitamin D3 on α-[1-14C]MeAIB accumulation in immature rat testis,” Steroids, vol. 74, no. 2, pp. 264–269, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. A. da Cruz Curte and G. F. Wassermann, “Identification of amino acid transport systems stimulated by FSH in rat testes,” Journal of Endocrinology, vol. 106, no. 3, pp. 291–294, 1985. View at Google Scholar · View at Scopus
  67. F. R. M. B. Silva, L. Renck, and G. F. Wassermann, “Retinol stimulates amino acid transport to Sertoli cell by a mechanism unrelated to protein synthesis,” Medical Science Research, vol. 23, no. 3, pp. 155–156, 1995. View at Google Scholar · View at Scopus
  68. F. R. M. B. Silva, L. D. Leite, K. P. Barreto, C. D'Agostini, and A. Zamoner, “Effect of 3,5,3′-triiodo-L-thyronine on amino acid accumulation and membrane potential in Sertoli cells of the rat testis,” Life Sciences, vol. 69, no. 8, pp. 977–986, 2001. View at Publisher · View at Google Scholar · View at Scopus
  69. F. R. M. B. Silva, L. D. Leite, and G. F. Wassermann, “Rapid signal transduction in Sertoli cells,” European Journal of Endocrinology, vol. 147, no. 3, pp. 425–433, 2002. View at Google Scholar · View at Scopus
  70. K. C. Volpato, D. Menegaz, L. D. Leite, K. P. Barreto, E. de Vilhena Garcia, and F. R. M. B. Silva, “Involvement of K+ channels and calcium-dependent pathways in the action of T3 on amino acid accumulation and membrane potential in Sertoli cells of immature rat testis,” Life Sciences, vol. 74, no. 10, pp. 1277–1288, 2004. View at Publisher · View at Google Scholar · View at Scopus
  71. D. Menegaz, A. Zamoner, C. Royer, L. D. Leite, Z. A. Bortolotto, and F. R. M. B. Silva, “Rapid responses to thyroxine in the testis: active protein synthesis-independent pathway,” Molecular and Cellular Endocrinology, vol. 246, no. 1-2, pp. 128–134, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. D. Menegaz, A. Barrientos-Duran, A. Kline et al., “1α,25(OH)2-vitamin D3 stimulation of secretion via chloride channel activation in Sertoli cells,” The Journal of Steroid Biochemistry and Molecular Biology, vol. 119, no. 3–5, pp. 127–134, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. A. P. Zanatta, L. Zanatta, R. Goncalves, A. Zamoner, and F. R. M. B. Silva, “Integrin participates in the effect of thyrone on plasma membrane in immature rat testis,” Biochimica et Biophysica Acta, vol. 1830, pp. 2629–2637, 2013. View at Google Scholar
  74. P. Biswas and L. P. Zanello, “1α,25(OH)2 vitamin D3 induction of ATP secretion in osteoblasts,” Journal of Bone and Mineral Research, vol. 24, no. 8, pp. 1450–1460, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. L. D. Russell and M. D. Griswold, The Sertoli Cell, Cache River Press, Clearwater, Fla, USA, 1993.
  76. N. Lalevee, F. Pluciennik, and M. Joffre, “Voltage-dependent calcium current with properties of T-type current in Sertoli cells from immature rat testis in primary cultures,” Biology of Reproduction, vol. 56, pp. 680–687, 1997. View at Google Scholar
  77. A. Jungwirth, T. Weiger, S. K. Singh, M. Paulmichl, and J. Frick, “Follicle-stimulating hormone activates a cAMP-dependent chloride conductance in TM4 Sertoli cells,” Biochemical and Biophysical Research Communications, vol. 233, pp. 203–206, 1997. View at Google Scholar
  78. F. R. Boockfor, R. A. Morris, D. C. DeSimone, D. M. Hunt, and K. B. Walsh, “Sertoli cell expression of the cystic fibrosis transmembrane conductance regulator,” American Journal of Physiology—Cell Physiology, vol. 274, no. 4, pp. C922–C930, 1998. View at Google Scholar · View at Scopus
  79. N. Lalevée and M. Joffre, “Inhibition by cAMP of calcium-activated chloride currents in cultured Sertoli cells from immature testis,” Journal of Membrane Biology, vol. 169, no. 3, pp. 167–174, 1999. View at Publisher · View at Google Scholar · View at Scopus
  80. C. Auzanneau, C. Norez, S. Noël, C. Jougla, F. Becq, and C. Vandebrouck, “Pharmacological profile of inhibition of the chloride channels activated by extracellular acid in cultured rat Sertoli cells,” Reproduction Nutrition Development, vol. 46, no. 3, pp. 241–255, 2006. View at Publisher · View at Google Scholar · View at Scopus
  81. C. Auzanneau, C. Norez, F. Antigny et al., “Transient receptor potential vanilloid 1 (TRPV1) channels in cultured rat Sertoli cells regulate an acid sensing chloride channel,” Biochemical Pharmacology, vol. 75, no. 2, pp. 476–483, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. A. P. Zanatta, L. Zanatta, R. Goncalves, A. Zamoner, and F. R. M. B. Silva, “Rapid responses to reverse T3 hormone in immature rat Sertoli cells: calcium uptake and exocytosis mediated by integrin,” PLoS ONE, vol. 8, no. 10, Article ID e77176, 2013. View at Publisher · View at Google Scholar
  83. D. Menegaz, C. Royer, A. Rosso, A. Z. P. D. Souza, A. R. S. D. Santos, and F. R. M. B. Silva, “Rapid stimulatory effect of thyroxine on plasma membrane transport systems: calcium uptake and neutral amino acid accumulation in immature rat testis,” International Journal of Biochemistry & Cell Biology, vol. 42, no. 6, pp. 1046–1051, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. L. P. Zanello and A. W. Norman, “Stimulation by 1α,25(OH)2-vitamin D3 of whole cell chloride currents in osteoblastic ROS 17/2.8 cells. A structure-function study,” The Journal of Biological Chemistry, vol. 272, no. 36, pp. 22617–22622, 1997. View at Google Scholar
  85. Z. Xiaoyu, B. Payal, O. Melissa, and L. P. Zanello, “1α,25(OH)2-vitamin D3 membrane-initiated calcium signaling modulates exocytosis and cell survival,” The Journal of Steroid Biochemistry and Molecular Biology, vol. 103, no. 3–5, pp. 457–461, 2007. View at Publisher · View at Google Scholar · View at Scopus
  86. L. Zanatta, A. Zamoner, R. Gonalves et al., “Effect of 1α,25-dihydroxyvitamin D3 in plasma membrane targets in immature rat testis: ionic channels and gamma-glutamyl transpeptidase activity,” Archives of Biochemistry and Biophysics, vol. 515, no. 1-2, pp. 46–53, 2011. View at Publisher · View at Google Scholar · View at Scopus
  87. C. Lu and A. Steinberger, “Gamma glutamyl transpeptidase activity in the developing rat testis. Enzyme localization in isolated cell types,” Biology of Reproduction, vol. 17, no. 1, pp. 84–88, 1977. View at Google Scholar · View at Scopus
  88. L. W. DeLap, S. S. Tate, and A. Meister, “γ-glutamyl transpeptidase of rat seminal vesicles; effect of orchidectomy and hormone administration on the transpeptidase in relation to its possible role in secretory activity,” Life Sciences, vol. 16, no. 5, pp. 691–704, 1975. View at Google Scholar · View at Scopus
  89. S. B. Meroni, D. F. Cánepa, E. H. Pellizzari, H. F. Schteingart, and S. B. Cigorraga, “Effects of purinergic agonists on aromatase and gammaglutamyl transpeptidase activities and on transferrin secretion in cultured Sertoli cells,” Journal of Endocrinology, vol. 157, no. 2, pp. 275–283, 1998. View at Publisher · View at Google Scholar · View at Scopus
  90. G. G. Glenner, J. E. Folk, and P. J. McMillan, “Histochemical demonstration of a gamma-glutamyl transpeptidase-like activity,” Journal of Histochemistry and Cytochemistry, vol. 10, pp. 481–489, 1962. View at Google Scholar
  91. L. Zanatta, A. Zamoner, R. Gonçalves et al., “1α,25-dihydroxyvitamin D3 signaling pathways on calcium uptake in 30-day-old rat sertoli cells,” Biochemistry, vol. 50, no. 47, pp. 10284–10292, 2011. View at Publisher · View at Google Scholar · View at Scopus
  92. L. Zanatta, A. Zamoner, A. P. Zanatta et al., “Nongenomic and genomic effects of 1α,25(OH)2 vitamin D3 in rat testis,” Life Sciences, vol. 89, no. 15-16, pp. 515–523, 2011. View at Publisher · View at Google Scholar · View at Scopus
  93. A. Rosso, M. Pansera, A. Zamoner et al., “1α,25(OH)2-vitamin D3 stimulates rapid plasma membrane calcium influx via MAPK activation in immature rat Sertoli cells,” Biochimie, vol. 94, no. 1, pp. 146–154, 2012. View at Publisher · View at Google Scholar · View at Scopus
  94. M. Blomberg Jensen, P. J. Bjerrum, T. E. Jessen et al., “Vitamin D is positively associated with sperm motility and increases intracellular calcium in human spermatozoa,” Human Reproduction, vol. 26, no. 6, pp. 1307–1317, 2011. View at Publisher · View at Google Scholar · View at Scopus
  95. J. Paranko, M. Kallajoki, L. J. Pelliniemi, V. P. Lehto, and I. Virtanen, “Transient coexpression of cytokeratin and vimentin in differentiating rat sertoli cells,” Developmental Biology, vol. 117, no. 1, pp. 35–44, 1986. View at Google Scholar · View at Scopus
  96. M. D. Show, M. D. Anway, J. S. Folmer, and B. R. Zirkin, “Reduced intratesticular testosterone concentration alters the polymerization state of the Sertoli cell intermediate filament cytoskeleton by degradation of vimentin,” Endocrinology, vol. 144, no. 12, pp. 5530–5536, 2003. View at Publisher · View at Google Scholar · View at Scopus
  97. W. A. Spruill, A. L. Steiner, L. L. Tres, and A. L. Kierszenbaum, “Follicle-stimulating hormone-dependent phosphorylation of vimentin in cultures of rat Sertoli cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 80, no. 4, pp. 993–997, 1983. View at Google Scholar · View at Scopus
  98. A. Zamoner, P. F. Corbelini, C. Funchal, D. Menegaz, F. R. M. B. Silva, and R. Pessoa-Pureur, “Involvement of calcium-dependent mechanisms in T3-induced phosphorylation of vimentin of immature rat testis,” Life Sciences, vol. 77, no. 26, pp. 3321–3335, 2005. View at Publisher · View at Google Scholar · View at Scopus
  99. A. Zamoner, P. Pierozan, L. F. Vidal et al., “Vimentin phosphorylation as a target of cell signaling mechanisms induced by 1α,25-dihydroxyvitamin v in immature rat testes,” Steroids, vol. 73, no. 14, pp. 1400–1408, 2008. View at Publisher · View at Google Scholar · View at Scopus
  100. A. W. Norman, W. H. Okamura, M. W. Hammond et al., “Comparison of 6-s-cis and 6-s-trans locked analogs of 1α, 25(OH)2-vitamin D3 indicates that the 6-s-cis conformation is preferred for rapid nongenomic biological responses and that neither 6-s-cis- nor 6-s-trans-locked analogs are preferred for genomic biological responses,” Molecular Endocrinology, vol. 11, no. 10, pp. 1518–1531, 1997. View at Google Scholar
  101. L.-X. Zhou, I. Nemere, and A. W. Norman, “1,25-dihydroxyvitamin D3 analog structure-function assessment of the rapid stimulation of intestinal calcium absorption (transcaltachia),” Journal of Bone and Mineral Research, vol. 7, no. 4, pp. 457–463, 1992. View at Google Scholar · View at Scopus
  102. A. W. Norman, I. Nemere, K. R. Muralidharan, and W. H. Okamura, “1β,25(OH)2-vitamin D3 is an antagonist of 1α,25(OH)2-vitamin D3 stimulated transcaltachia (the rapid hormonal stimulation of intestinal calcium transport),” Biochemical and Biophysical Research Communications, vol. 189, no. 3, pp. 1450–1456, 1992. View at Publisher · View at Google Scholar · View at Scopus
  103. A. W. Norman, R. Bouillon, M. C. Farach-Carson et al., “Demonstration that 1β,25-dihydroxyvitamin D3 is an antagonist of the nongenomic but not genomic biological responses and biological profile of the three A-ring diastereomers of 1α,25-dihydroxyvitamin D3,” The Journal of Biological Chemistry, vol. 268, no. 27, pp. 20022–20030, 1993. View at Google Scholar · View at Scopus
  104. C. M. Bula, J. E. Bishop, S. Ishizuka, and A. W. Norman, “25-dehydro-1α-hydroxyvitamin D3-26,23S-lactone antagonizes the nuclear vitamin D receptor by mediating a unique noncovalent conformational change,” Molecular Endocrinology, vol. 14, no. 11, pp. 1788–1796, 2000. View at Google Scholar · View at Scopus
  105. D. Menegaz, M. T. Mizwicki, A. Barrientos-Duran, N. Chen, H. L. Henry, and A. W. Norman, “Vitamin d receptor (VDR) regulation of voltage-gated chloride channels by ligands preferring a VDR-alternative pocket (VDR-AP),” Molecular Endocrinology, vol. 25, no. 8, pp. 1289–1300, 2011. View at Publisher · View at Google Scholar · View at Scopus
  106. J. A. Huhtakangas, C. J. Olivera, J. E. Bishop, L. P. Zanello, and A. W. Norman, “The vitamin D receptor is present in caveolae-enriched plasma membranes and binds 1α,25(OH)2-vitamin D3 in vivo and in vitro,” Molecular Endocrinology, vol. 18, no. 11, pp. 2660–2671, 2004. View at Publisher · View at Google Scholar · View at Scopus