Table of Contents
Advances in Artificial Neural Systems
Volume 2009, Article ID 308239, 9 pages
http://dx.doi.org/10.1155/2009/308239
Review Article

Recent Advances and Future Challenges for Artificial Neural Systems in Geotechnical Engineering Applications

1Department of Civil Engineering, Curtin University of Technology, Perth, WA 6845, Australia
2School of Civil, Environmental and Mining Engineering, University of Adelaide, Adelaide, SA 5005, Australia

Received 28 April 2009; Accepted 1 September 2009

Academic Editor: Frederic Maire

Copyright © 2009 Mohamed A. Shahin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. A. Shahin, M. B. Jaksa, and H. R. Maier, “Artificial neural network applications in geotechnical engineering,” Australian Geomechanics, vol. 36, no. 1, pp. 49–62, 2001. View at Google Scholar
  2. I. Ahmad, M. H. El Naggar, and A. N. Khan, “Artificial neural network application to estimate kinematic soil pile interaction response parameters,” Soil Dynamics and Earthquake Engineering, vol. 27, no. 9, pp. 892–905, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. S. K. Das and P. K. Basudhar, “Undrained lateral load capacity of piles in clay using artificial neural network,” Computers and Geotechnics, vol. 33, no. 8, pp. 454–459, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. A. M. Hanna, G. Morcous, and M. Helmy, “Efficiency of pile groups installed in cohesionless soil using artificial neural networks,” Canadian Geotechnical Journal, vol. 41, no. 6, pp. 1241–1249, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Ardalan, A. Eslami, and N. Nariman-Zadeh, “Piles shaft capacity from CPT and CPTu data by polynomial neural networks and genetic algorithms,” Computers and Geotechnics, vol. 36, no. 4, pp. 616–625, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. M. A. Shahin, “Modelling axial capacity of pile foundations by intelligent computing,” in Proceedings of the 2nd BGA International Conference on Foundations (ICOF '08), pp. 283–294, IHS BRE Press, Dundee, Scotland, 2008.
  7. A. T. C. Goh, F. H. Kulhawy, and C. G. Chua, “Bayesian neural network analysis of undrained side resistance of drilled shafts,” Journal of Geotechnical & Geoenvironmental Engineering, vol. 131, no. 1, pp. 84–93, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. M. A. Shahin and M. B. Jaksa, “Intelligent computing for predicting axial capacity of drilled shafts,” in Proceedings of the International Foundation Congress and Equipment Expo (IFCEE '09), ASCE Geotechnical Special Publication, no. 186, pp. 26–33, Orlando, Fla, USA, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. M. A. Shahin and M. B. Jaksa, “Neural network prediction of pullout capacity of marquee ground anchors,” Computers and Geotechnics, vol. 32, no. 3, pp. 153–163, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. M. A. Shahin and M. B. Jaksa, “Pullout capacity of small ground anchors by direct cone penetration test methods and neural networks,” Canadian Geotechnical Journal, vol. 43, no. 6, pp. 626–637, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. Y.-L. Chen, R. Azzam, and F.-B. Zhang, “The displacement computation and construction pre-control of a foundation pit in Shanghai utilizing FEM and intelligent methods,” Geotechnical and Geological Engineering, vol. 24, no. 6, pp. 1781–1801, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. M. A. Shahin, M. B. Jaksa, and H. R. Maier, “Artificial neural network-based settlement prediction formula for shallow foundations on granular soils,” Australian Geomechanics, vol. 37, no. 4, pp. 45–52, 2002. View at Google Scholar
  13. M. A. Shahin, M. B. Jaksa, and H. R. Maier, “Neural network based stochastic design charts for settlement prediction,” Canadian Geotechnical Journal, vol. 42, no. 1, pp. 110–120, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. M. A. Shahin, H. R. Maier, and M. B. Jaksa, “Predicting settlement of shallow foundations using neural networks,” Journal of Geotechnical & Geoenvironmental Engineering, vol. 128, no. 9, pp. 785–793, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. M. A. Shahin, H. R. Maier, and M. B. Jaksa, “Predicting settlement of shallow foundations using neural networks,” Journal of Geotechnical & Geoenvironmental Engineering, vol. 128, no. 9, pp. 785–793, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. M. A. Shahin, H. R. Maier, and M. B. Jaksa, “Settlement prediction of shallow foundations on granular soils using B-spline neurofuzzy models,” Computers and Geotechnics, vol. 30, no. 8, pp. 637–647, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. L. Kuo, M. B. Jaksa, A. V. Lyamin, and W. S. Kaggwa, “ANN-based model for predicting the bearing capacity of strip footing on multi-layered cohesive soil,” Computers and Geotechnics, vol. 36, no. 3, pp. 503–516, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Padmini, K. Ilamparuthi, and K. P. Sudheer, “Ultimate bearing capacity prediction of shallow foundations on cohesionless soils using neurofuzzy models,” Computers and Geotechnics, vol. 35, no. 1, pp. 33–46, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. P. Provenzano, S. Ferlisi, and A. Musso, “Interpretation of a model footing response through an adaptive neural fuzzy inference system,” Computers and Geotechnics, vol. 31, no. 3, pp. 251–266, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Adeli, “Neural networks in civil engineering: 1989–2000,” Computer-Aided Civil and Infrastructure Engineering, vol. 16, no. 2, pp. 126–142, 2001. View at Google Scholar · View at Scopus
  21. I. A. Basheer, “Stress-strain behavior of geomaterials in loading reversal simulated by time-delay neural networks,” Journal of Materials in Civil Engineering, vol. 14, no. 3, pp. 270–273, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. Q. Fu, Y. M. A. Hashash, S. Jung, and J. Ghaboussi, “Integration of laboratory testing and constitutive modeling of soils,” Computers and Geotechnics, vol. 34, no. 5, pp. 330–345, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Habibagahi and A. Bamdad, “A neural network framework for mechanical behavior of unsaturated soils,” Canadian Geotechnical Journal, vol. 40, no. 3, pp. 684–693, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. M. A. Hashash, S. Jung, and J. Ghaboussi, “Numerical implementation of a neural network based material model in finite element analysis,” International Journal for Numerical Methods in Engineering, vol. 59, no. 7, pp. 989–1005, 2004. View at Google Scholar · View at Scopus
  25. M. Lefik and B. A. Schrefler, “Artificial neural network as an incremental non-linear constitutive model for a finite element code,” Computer Methods in Applied Mechanics and Engineering, vol. 192, no. 28–30, pp. 3265–3283, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. M. Najjar and C. Huang, “Simulating the stress-strain behavior of Georgia kaolin via recurrent neuronet approach,” Computers and Geotechnics, vol. 34, no. 5, pp. 346–361, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. M. A. Shahin and B. Indraratna, “Modeling the mechanical behavior of railway ballast using artificial neural networks,” Canadian Geotechnical Journal, vol. 43, no. 11, pp. 1144–1152, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Banimahd, S. S. Yasrobi, and P. K. Woodward, “Artificial neural network for stress-strain behavior of sandy soils: knowledge based verification,” Computers and Geotechnics, vol. 32, no. 5, pp. 377–386, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. W. Gao, X. T. Feng, and Y. R. Zheng, “Identification of a constitutive model for geo-materials using a new intelligent bionics algorithm,” International Journal of Rock Mechanics and Mining Sciences, vol. 41, supplement 1, pp. 454–459, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. Yang and M. S. Rosenbaum, “The artificial neural network as a tool for assessing geotechnical properties,” Geotechnical and Geological Engineering, vol. 20, no. 2, pp. 149–168, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Çelik and Ö. Tan, “Determination of preconsolidation pressure with artificial neural network,” Civil Engineering and Environmental Science, vol. 22, no. 4, pp. 217–231, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. S. J. Lee, S. R. Lee, and Y. S. Kim, “An approach to estimate unsaturated shear strength using artificial neural network and hyperbolic formulation,” Computers and Geotechnics, vol. 30, no. 6, pp. 489–503, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. P. U. Kurup and N. K. Dudani, “Neural networks for profiling stress history of clays from PCPT data,” Journal of Geotechnical & Geoenvironmental Engineering, vol. 128, no. 7, pp. 569–579, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. B. S. Narendra, P. V. Sivapullaiah, S. Suresh, and S. N. Omkar, “Prediction of unconfined compressive strength of soft grounds using computational intelligence techniques: a comparative study,” Computers and Geotechnics, vol. 33, no. 3, pp. 196–208, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Baykasoglu, H. Güllü, H. Çanakçi, and L. Özbakir, “Prediction of compressive and tensile strength of limestone via genetic programming,” Expert Systems with Applications, vol. 35, no. 1-2, pp. 111–123, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. W. Y. Byeon, S. R. Lee, and Y. S. Kim, “Application of flat DMT and ANN to Korean soft clay deposits for reliable estimation of undrained shear strength,” International Journal of Offshore and Polar Engineering, vol. 16, no. 1, pp. 73–80, 2006. View at Google Scholar · View at Scopus
  37. A. Kaya, “Residual and fully softened strength evaluation of soils using artificial neural networks,” Geotechnical and Geological Engineering, vol. 27, no. 2, pp. 281–288, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Erzin, “Artificial neural networks approach for swell pressure versus soil suction behaviour,” Canadian Geotechnical Journal, vol. 44, no. 10, pp. 1215–1223, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. I. Ashayeri and S. Yasrebi, “Free-swell and swelling pressure of unsaturated compacted clays; experiments and neural networks modeling,” Geotechnical and Geological Engineering, vol. 27, no. 1, pp. 137–153, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. S. K. Das and P. K. Basudhar, “Prediction of coefficient of lateral earth pressure using artificial neural networks,” The Electronic Journal of Geotechnical Engineering, vol. 10, pp. 1–5, 2005. View at Google Scholar · View at Scopus
  41. S. K. Sinha and M. C. Wang, “Artificial neural network prediction models for soil compaction and permeability,” Geotechnical and Geological Engineering, vol. 26, no. 1, pp. 47–64, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. A. H. Abdel-Rahman, “Predicting compaction of cohesionless soils using ANN,” Ground Improvement, vol. 161, no. 1, pp. 3–8, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. P. U. Kurup and E. P. Griffin, “Prediction of soil composition from CPT data using general regression neural network,” Journal of Computing in Civil Engineering, vol. 20, no. 4, pp. 281–289, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. B. Bhattacharya and D. P. Solomatine, “Machine learning in soil classification,” Neural Networks, vol. 19, no. 2, pp. 186–195, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. M. P. Romo and S. R. García, “Neurofuzzy mapping of CPT values into solid dynamic properties,” Soil Dynamics and Earthquake Engineering, vol. 23, no. 6, pp. 473–482, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. S. R. García, M. P. Romo, and J. Figueroa-Nazuno, “Soil dynamic properties determination: a neurofuzzy system approach,” Control and Intelligent Systems, vol. 34, no. 1, pp. 1–11, 2006. View at Google Scholar · View at Scopus
  47. M. H. Baziar and A. Ghorbani, “Evaluation of lateral spreading using artificial neural networks,” Soil Dynamics and Earthquake Engineering, vol. 25, no. 1, pp. 1–9, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. A. T. C. Goh, “Probabilistic neural network for evaluating seismic liquefaction potential,” Canadian Geotechnical Journal, vol. 39, no. 1, pp. 219–232, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. A. M. Hanna, D. Ural, and G. Saygili, “Neural network model for liquefaction potential in soil deposits using Turkey and Taiwan earthquake data,” Soil Dynamics and Earthquake Engineering, vol. 27, no. 6, pp. 521–540, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. A. A. Javadi, M. Rezania, and M. M. Nezhad, “Evaluation of liquefaction induced lateral displacements using genetic programming,” Computers and Geotechnics, vol. 33, no. 4-5, pp. 222–233, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. K. Young-Su and K. Byung-Tak, “Use of artificial neural networks in the prediction of liquefaction resistance of sands,” Journal of Geotechnical & Geoenvironmental Engineering, vol. 132, no. 11, pp. 1502–1504, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. A. M. Hanna, D. Ural, and G. Saygili, “Evaluation of liquefaction potential of soil deposits using artificial neural networks,” Engineering Computations, vol. 24, no. 1, pp. 5–16, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. M. S. Rahman and J. Wang, “Fuzzy neural network models for liquefaction prediction,” Soil Dynamics and Earthquake Engineering, vol. 22, no. 8, pp. 685–694, 2002. View at Publisher · View at Google Scholar · View at Scopus
  54. C. H. Juang, H. Yuan, D.-H. Lee, and P.-S. Lin, “Simplified cone penetration test-based method for evaluating liquefaction resistance of soils,” Journal of Geotechnical & Geoenvironmental Engineering, vol. 129, no. 1, pp. 66–80, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. S. S. H. Khozaghi and A. J. A.-Z. Choobbasti, “Predicting of liquefaction potential in soils using artificial neural networks,” Electronic Journal of Geotechnical Engineering, vol. 12C, 2007. View at Google Scholar · View at Scopus
  56. G. T. C. Kung, E. C. L. Hsiao, M. Schuster, and C. H. Juang, “A neural network approach to estimating deflection of diaphragm walls caused by excavation in clays,” Computers and Geotechnics, vol. 34, no. 5, pp. 385–396, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. Y.-S. Kim and B.-T. Kim, “Prediction of relative crest settlement of concrete-faced rockfill dams analyzed using an artificial neural network model,” Computers and Geotechnics, vol. 35, no. 3, pp. 313–322, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. Y. Yu, B. Zhang, and H. Yuan, “An intelligent displacement back-analysis method for earth-rockfill dams,” Computers and Geotechnics, vol. 34, no. 6, pp. 423–434, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. Y. Lu, “Underground blast induced ground shock and its modelling using artificial neural network,” Computers and Geotechnics, vol. 32, no. 3, pp. 164–178, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. T. N. Singh and V. Singh, “An intelligent approach to prediction and control ground vibration in mines,” Geotechnical and Geological Engineering, vol. 23, no. 3, pp. 249–262, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. J. Q. Shang, W. Ding, R. K. Rowe, and L. Josic, “Detecting heavy metal contamination in soil using complex permittivity and artificial neural networks,” Canadian Geotechnical Journal, vol. 41, no. 6, pp. 1054–1067, 2004. View at Publisher · View at Google Scholar · View at Scopus
  62. C. Gokceoglu, E. Yesilnacar, H. Sonmez, and A. Kayabasi, “A neuro-fuzzy model for modulus of deformation of jointed rock masses,” Computers and Geotechnics, vol. 31, no. 5, pp. 375–383, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. T. N. Singh, A. K. Verma, V. Singh, and A. Sahu, “Slake durability study of shaly rock and its predictions,” Environmental Geology, vol. 47, no. 2, pp. 246–253, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. S. Ma, L.-H. Cao, and H.-Y. Li, “The improved neutral network and its application for valuing rock mass mechanical parameter,” Journal of Coal Science and Engineering, vol. 12, no. 1, pp. 21–24, 2006. View at Google Scholar · View at Scopus
  65. T. N. Singh, A. K. Verma, and P. K. Sharma, “A neuro-genetic approach for prediction of time dependent deformational characteristic of rock and its sensitivity analysis,” Geotechnical and Geological Engineering, vol. 25, no. 4, pp. 395–407, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. V. B. Maji and T. G. Sitharam, “Prediction of elastic modulus of jointed rock mass using artificial neural networks,” Geotechnical and Geological Engineering, vol. 26, no. 4, pp. 443–452, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. T. G. Sitharam, P. Samui, and P. Anbazhagan, “Spatial variability of rock depth in Bangalore using geostatistical, neural network and support vector machine models,” Geotechnical and Geological Engineering, vol. 26, no. 5, pp. 503–517, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. N. Caglar and H. Arman, “The applicability of neural networks in the determination of soil profiles,” Bulletin of Engineering Geology and the Environment, vol. 66, no. 3, pp. 295–301, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. C. Yoo and J.-M. Kim, “Tunneling performance prediction using an integrated GIS and neural network,” Computers and Geotechnics, vol. 34, no. 1, pp. 19–30, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. A. G. Benardos and D. C. Kaliampakos, “Modelling TBM performance with artificial neural networks,” Tunnelling and Underground Space Technology, vol. 19, no. 6, pp. 597–605, 2004. View at Publisher · View at Google Scholar · View at Scopus
  71. K. Neaupane and S. Achet, “Some applications of a backpropagation neural network in geo-engineering,” Environmental Geology, vol. 45, no. 4, pp. 567–575, 2004. View at Publisher · View at Google Scholar · View at Scopus
  72. K. M. Neaupane and N. R. Adhikari, “Prediction of tunneling-induced ground movement with the multi-layer perceptron,” Tunnelling and Underground Space Technology, vol. 21, no. 2, pp. 151–159, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. Y.-L. Chen, R. Azzam, T. M. Fernandez-Steeger, and L. Li, “Studies on construction pre-control of a connection aisle between two neighbouring tunnels in Shanghai by means of 3D FEM, neural networks and fuzzy logic,” Geotechnical and Geological Engineering, vol. 27, no. 1, pp. 155–167, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. A. Alimoradi, A. Moradzadeh, R. Naderi, M. Z. Salehi, and A. Etemadi, “Prediction of geological hazardous zones in front of a tunnel face using TSP-203 and artificial neural networks,” Tunnelling and Underground Space Technology, vol. 23, no. 6, pp. 711–717, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. M. D. Ferentinou and M. G. Sakellariou, “Computational intelligence tools for the prediction of slope performance,” Computers and Geotechnics, vol. 34, no. 5, pp. 362–384, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. A. T. C. Goh and F. H. Kulhawy, “Neural network approach to model the limit state surface for reliability analysis,” Canadian Geotechnical Journal, vol. 40, no. 6, pp. 1235–1244, 2003. View at Publisher · View at Google Scholar · View at Scopus
  77. F. Mayoraz and L. Vulliet, “Neural networks for slope movement prediction,” The International Journal of Geomechanics, vol. 2, no. 2, pp. 153–173, 2002. View at Google Scholar
  78. D. P. Kanungo, M. K. Arora, S. Sarkar, and R. P. Gupta, “A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas,” Engineering Geology, vol. 85, no. 3-4, pp. 347–366, 2006. View at Publisher · View at Google Scholar · View at Scopus
  79. H. B. Wang and K. Sassa, “Rainfall-induced landslide hazard assessment using artificial neural networks,” Earth Surface Processes and Landforms, vol. 31, no. 2, pp. 235–247, 2006. View at Publisher · View at Google Scholar · View at Scopus
  80. Y. M. A. Hashash, C. Marulanda, J. Ghaboussi, and S. Jung, “Systematic update of a deep excavation model using field performance data,” Computers and Geotechnics, vol. 30, no. 6, pp. 477–488, 2003. View at Publisher · View at Google Scholar · View at Scopus
  81. L. V. Fausett, Fundamentals Neural Networks: Architecture, Algorithms, and Applications, Prentice-Hall, Englewood Cliffs, NJ, USA, 1994.
  82. J. M. Zurada, Introduction to Artificial Neural Systems, West Publishing, Saint Paul, Minn, USA, 1992.
  83. H. R. Maier and G. C. Dandy, “Applications of artificial neural networks to forecasting of surface water quality variables: issues, applications and challenges,” in Artificial Neural Networks in Hydrology, R. S. Govindaraju and A. R. Rao, Eds., pp. 287–309, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000. View at Google Scholar
  84. M. A. Shahin, H. R. Maier, and M. B. Jaksa, “Data division for developing neural networks applied to geotechnical engineering,” Journal of Computing in Civil Engineering, vol. 18, no. 2, pp. 105–114, 2004. View at Publisher · View at Google Scholar · View at Scopus
  85. M. A. Shahin, M. B. Jaksa, and H. R. Maier, “State of the art of artificial neural networks in geotechnical engineering,” Electronic Journal of Geotechnical Engineering, vol. 8, pp. 1–26, 2008. View at Google Scholar
  86. G. B. Kingston, H. R. Maier, and M. F. Lambert, “Calibration and validation of neural networks to ensure physically plausible hydrological modeling,” Journal of Hydrology, vol. 314, no. 1-4, pp. 158–176, 2005. View at Publisher · View at Google Scholar · View at Scopus
  87. M. A. Shahin, H. R. Maier, and M. B. Jaksa, “Investigation into the robustness of artificial neural network models for a case study in civil engineering,” in Proceedings of the International Congress on Modelling and Simulation (MODSIM '05), pp. 79–83, Melbourne, Australia, 2005.
  88. G. D. Garson, “Interpreting neural-network connection weights,” AI Expert, vol. 6, no. 7, pp. 47–51, 1991. View at Google Scholar
  89. J. D. Olden, M. K. Joy, and R. G. Death, “An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data,” Ecological Modelling, vol. 178, no. 3-4, pp. 389–397, 2004. View at Publisher · View at Google Scholar · View at Scopus
  90. M. Pal, “Support vector machines-based modelling of seismic liquefaction potential,” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 30, no. 10, pp. 983–996, 2006. View at Publisher · View at Google Scholar · View at Scopus
  91. A. T. C. Goh and S. H. Goh, “Support vector machines: their use in geotechnical engineering as illustrated using seismic liquefaction data,” Computers and Geotechnics, vol. 34, no. 5, pp. 410–421, 2007. View at Publisher · View at Google Scholar · View at Scopus
  92. H.-B. Zhao, “Slope reliability analysis using a support vector machine,” Computers and Geotechnics, vol. 35, no. 3, pp. 459–467, 2008. View at Publisher · View at Google Scholar · View at Scopus
  93. P. Samui, “Prediction of friction capacity of driven piles in clay using the support vector machine,” Canadian Geotechnical Journal, vol. 45, no. 2, pp. 288–295, 2008. View at Publisher · View at Google Scholar · View at Scopus
  94. O. Giustolisi, A. Doglioni, D. A. Savic, and B. W. Webb, “A multi-model approach to analysis of environmental phenomena,” Environmental Modelling & Software, vol. 22, no. 5, pp. 674–682, 2007. View at Publisher · View at Google Scholar · View at Scopus
  95. O. Giustolisi, “Using genetic programming to determine Chezy resistance coefficient in corrugated channels,” Journal of Hydroinformatics, vol. 3, no. 6, pp. 157–173, 2004. View at Google Scholar
  96. A. Jain, K. P. Sudheer, and S. Srinivasulu, “Identification of physical processes inherent in artificial neural network rainfall runoff models,” Hydrological Processes, vol. 18, no. 3, pp. 571–581, 2004. View at Publisher · View at Google Scholar · View at Scopus
  97. K. P. Sudheer, “Knowledge extraction from trained neural network river flow models,” Journal of Hydrologic Engineering, vol. 10, no. 4, pp. 264–269, 2005. View at Publisher · View at Google Scholar · View at Scopus
  98. K. P. Sudheer and A. Jain, “Explaining the internal behaviour of artificial neural network river flow models,” Hydrological Processes, vol. 18, no. 4, pp. 833–844, 2004. View at Publisher · View at Google Scholar · View at Scopus
  99. G. B. Kingston, H. R. Maier, and M. F. Lambert, “A probabilistic method for assisting knowledge extraction from artificial neural networks used for hydrological prediction,” Mathematical and Computer Modelling, vol. 44, no. 5-6, pp. 499–512, 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. S. H. Ni, P. C. Lu, and C. H. Juang, “A fuzzy neural network approach to evaluation of slope failure potential,” Computer-Aided Civil and Infrastructure Engineering, vol. 11, no. 1, pp. 59–66, 1996. View at Publisher · View at Google Scholar · View at Scopus
  101. X.-T. Feng, B.-R. Chen, C. Yang, H. Zhou, and X. Ding, “Identification of visco-elastic models for rocks using genetic programming coupled with the modified particle swarm optimization algorithm,” International Journal of Rock Mechanics and Mining Sciences, vol. 43, no. 5, pp. 789–801, 2006. View at Publisher · View at Google Scholar · View at Scopus
  102. A. Johari, G. Habibagahi, and A. Ghahramani, “Prediction of soil-water characteristic curve using genetic programming,” Journal of Geotechnical & Geoenvironmental Engineering, vol. 132, no. 5, pp. 661–665, 2006. View at Publisher · View at Google Scholar · View at Scopus
  103. M. Rezania and A. Javadi, “A new genetic programming model for predicting settlement of shallow foundations,” Canadian Geotechnical Journal, vol. 44, no. 12, pp. 1462–1472, 2007. View at Google Scholar
  104. I. Alkroosh, M. A. Shahin, and H. R. Nikraz, “Modelling axial capacity of bored piles using genetic programming technique,” in Proceedings of the 3rd International Geo-Chiangmai Conference, pp. 113–120, Chiangmai, Thailand, 2008.
  105. I. Flood and N. Kartam, “Neural networks in civil engineering. I: principles and understanding,” Journal of Computing in Civil Engineering, vol. 8, no. 2, pp. 131–148, 1994. View at Google Scholar · View at Scopus
  106. A. W. Minns and M. J. Hall, “Artificial neural networks as rainfall-runoff models,” Hydrological Sciences Journal, vol. 41, no. 3, pp. 399–417, 1996. View at Google Scholar · View at Scopus
  107. A. S. Tokar and P. A. Johnson, “Rainfall-runoff modeling using artificial neural networks,” Journal of Hydrologic Engineering, vol. 4, no. 3, pp. 232–239, 1999. View at Publisher · View at Google Scholar · View at Scopus
  108. K. P. Sudheer, P. C. Nayak, and K. S. Ramasastri, “Improving peak flow estimates in artificial neural network river flow models,” Hydrological Processes, vol. 17, no. 3, pp. 677–686, 2003. View at Publisher · View at Google Scholar · View at Scopus
  109. H. R. Maier and G. C. Dandy, “Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications,” Environmental Modelling & Software, vol. 15, no. 1, pp. 101–124, 2000. View at Publisher · View at Google Scholar · View at Scopus
  110. W. L. Buntine and A. S. Weigend, “Bayesian back-propagation,” Complex Systems, vol. 5, pp. 603–643, 1991. View at Google Scholar
  111. G. B. Kingston, M. F. Lambert, and H. R. Maier, “Bayesian parameter estimation applied to artificial neural networks used for hydrological modelling,” Water Resources Research, vol. 41, Article ID W12409, 2005. View at Publisher · View at Google Scholar
  112. G. MacKay, “A practical Bayesian framework for backpropagation networks,” Neural Computation, vol. 4, pp. 448–472, 1992. View at Google Scholar
  113. G. B. Kingston, H. R. Maier, and M. F. Lambert, “Bayesian model selection applied to artificial neural networks used for water resources modeling,” Water Resources Research, vol. 44, no. 4, Article ID W04419, 2008. View at Publisher · View at Google Scholar · View at Scopus
  114. M. A. Shahin, M. B. Jaksa, and H. R. Maier, “Stochastic simulation of settlement of shallow foundations based on a deterministic neural network model,” in Proceedings of the International Congress on Modelling and Simulation (MODSIM '05), pp. 73–78, Melbourne, Australia, 2005.
  115. I. Flood, “Towards the next generation of artificial neural networks for civil engineering,” Advanced Engineering Informatics, vol. 22, no. 1, pp. 4–14, 2008. View at Publisher · View at Google Scholar · View at Scopus