Table of Contents
Advances in Artificial Neural Systems
Volume 2009, Article ID 724092, 10 pages
Research Article

Automatic Estimation of the Dynamics of Channel Conductance Using a Recurrent Neural Network

Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu-shi, Fukuoka 808-0196, Japan

Received 1 April 2008; Revised 28 June 2008; Accepted 4 October 2008

Academic Editor: Akira Imada

Copyright © 2009 Masaaki Takahashi and Kiyohisa Natsume. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. L. Hines and N. T. Carnevale, “The NEURON simulation environment,” Neural Computation, vol. 9, no. 6, pp. 1179–1209, 1997. View at Publisher · View at Google Scholar
  2. J. M. Bower and D. Beeman, The Book of GENESIS: Exploring Realistic Neural Models with the General Neural Simulation System, Springer, New York, NY, USA, 2nd edition, 1998.
  3. K. Doya, A. I. Slverston, and P. F. Rowat, “A Hodgkin-Huxley type neuron model that learns slow non-spike oscillation,” in Advances in Neural Information Processing Systems, vol. 6, pp. 566–573, Morgan Kaufmann, San Francisco, Calif, USA, 1994. View at Google Scholar
  4. E. M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, The MIT Press, Cambridge, Mass, USA, 2007.
  5. M. Takahashi, C. Youbo, M. Ishikawa, and K. Natsume, “Simulation of neuronal activity using recurrent neural network,” in Proceedings of the 15th IEEE International Workshop on Nonlinear Dynamics of Electronic Systems (NDES '07), pp. 78–81, Tokushima, Japan, July 2007.
  6. A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and its application to conduction and excitation in nerve,” The Journal of Physiology, vol. 117, pp. 500–544, 1952. View at Google Scholar
  7. M. Jordan, “A parallel distributed processing approach,” ICS Report 8604, Institute for Cognitive Science, University of California at San Diego, La Jolla, Calif, USA, 1986. View at Google Scholar
  8. J. L. Elman, “Finding structure in time,” Cognitive Science, vol. 14, no. 2, pp. 179–211, 1990. View at Publisher · View at Google Scholar
  9. A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. J. Lang, “Phoneme recognition using time-delay neural networks,” IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 37, no. 3, pp. 328–339, 1989. View at Publisher · View at Google Scholar
  10. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations by error propagation,” in Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1: Foundations, chapter 8, pp. 318–362, The MIT Press, Cambridge, Mass, USA, 1986. View at Google Scholar
  11. A. R. Kay and R. K. S. Wong, “Calcium current activation kinetics in isolated pyramidal neurones of the Ca1 region of the mature guinea-pig hippocampus,” The Journal of Physiology, vol. 392, pp. 603–616, 1987. View at Google Scholar
  12. B. Naundorf, F. Wolf, and M. Volgushev, “Unique features of action potential initiation in cortical neurons,” Nature, vol. 440, no. 7087, pp. 1060–1063, 2006. View at Publisher · View at Google Scholar