Table of Contents
Advances in Artificial Neural Systems
Volume 2010, Article ID 814702, 8 pages
http://dx.doi.org/10.1155/2010/814702
Research Article

An Approach to Applying Feedback Error Learning for Functional Electrical Stimulation Controller: Computer Simulation Tests of Wrist Joint Control

1Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 6-6-11-901-7 Aramaki-aza-Aoba, Aoba-ku, Sendai 980-8579, Japan
2Department of Electrical and Communication Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan

Received 11 June 2010; Accepted 13 October 2010

Academic Editor: Yutaka Maeda

Copyright © 2010 Takashi Watanabe and Keisuke Fukushima. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Hoshimiya, A. Naito, M. Yajima, and Y. Handa, “A multichannel FES system for the restoration of motor functions in high spinal cord injury patients: a respiration-controlled system for multijoint upper extremity,” IEEE Transactions on Biomedical Engineering, vol. 36, no. 7, pp. 754–760, 1989. View at Google Scholar · View at Scopus
  2. B. Smith, Z. Tang, M. W. Johnson et al., “An externally powered, multichannel, implantable stimulator-telemeter for control of paralyzed muscle,” IEEE Transactions on Biomedical Engineering, vol. 45, no. 4, pp. 463–475, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. Handa, K. Ohkubo, and N. Hoshimiya, “A portable multi-channel FES system for restoration of motor function of the paralyzed extremities,” Automedica, vol. 11, pp. 221–231, 1989. View at Google Scholar
  4. G.-C. Chang, J.-J. Luh, G.-D. Liao et al., “A neuro-control system for the knee joint position control with quadriceps stimulation,” IEEE Transactions on Rehabilitation Engineering, vol. 5, no. 1, pp. 2–11, 1997. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Ferrarin, F. Palazzo, R. Riener, and J. Quintern, “Model-based control of FES-induced single joint movements,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 9, no. 3, pp. 245–257, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. Y.-L. Chen, S.-C. Chen, W.-L. Chen, C.-C. Hsiao, T.-S. Kuo, and J.-S. Lai, “Neural network and fuzzy control in FES-assisted locomotion for the hemiplegic,” Journal of Medical Engineering and Technology, vol. 28, no. 1, pp. 32–38, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Blana, R. F. Kirsch, and E. K. Chadwick, “Combined feedforward and feedback control of a redundant, nonlinear, dynamic musculoskeletal system,” Medical and Biological Engineering and Computing, vol. 47, pp. 533–542, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Gomi and M. Kawato, “Neural network control for a closed-loop system using feedback-error-learning,” Neural Networks, vol. 6, no. 7, pp. 933–946, 1993. View at Google Scholar · View at Scopus
  9. K. Kurosawa, R. Futami, T. Watanabe, and N. Hoshimiya, “Joint angle control by FES using a feedback error learning controller,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 13, no. 3, pp. 359–371, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Watanabe, K. Iibuchi, K. Kurosawa, and N. Hoshimiya, “A method of multichannel PID control of two-degree-of-freedom wrist joint movements by functional electrical stimulation,” Systems and Computers in Japan, vol. 34, no. 5, pp. 25–36, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. M. A. Lemay and P. E. Crago, “A dynamic model for simulating movements of the elbow, forearm, and wrist,” Journal of Biomechanics, vol. 29, no. 10, pp. 1319–1330, 1996. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Levy, J. Mizrahi, and Z. Susak, “Recruitment, force and fatigue characteristics of quadriceps muscles of paraplegics isometrically activated by surface functional electrical stimulation,” Journal of Biomedical Engineering, vol. 12, no. 2, pp. 150–156, 1990. View at Google Scholar · View at Scopus
  13. M. G. Pandy, B. A. Garner, and F. C. Anderson, “Optimal control of non-ballistic muscular movements: a constraint-based performance criterion for rising from a chair,” Journal of Biomechanical Engineering, vol. 117, no. 1, pp. 15–26, 1995. View at Google Scholar · View at Scopus
  14. B. M. Nigg and W. Herzong, Biomechanics of the Musculo-Skeletal System, John Wiley & Sons, New York, NY, USA, 1995.
  15. G. M. Eom, T. Watanabe, R. Futami, N. Hoshimiy, and Y. Handa, “Computer-aided generation of stimulation data and model identification for functional electrical stimulation (FES) control of lower extremities,” Frontiers of Medical and Biological Engineering, vol. 10, no. 3, pp. 213–231, 2000. View at Google Scholar · View at Scopus
  16. F. E. Zajac, “Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control,” Critical Reviews in Biomedical Engineering, vol. 17, no. 4, pp. 359–411, 1989. View at Google Scholar · View at Scopus
  17. J. M. Winters and L. Stark, “Analysis of fundamental human movement patterns through the use of in-depth antagonistic muscle models,” IEEE Transactions on Biomedical Engineering, vol. 32, no. 10, pp. 826–839, 1985. View at Google Scholar · View at Scopus