Table of Contents
Advances in Artificial Neural Systems
Volume 2012 (2012), Article ID 107046, 9 pages
http://dx.doi.org/10.1155/2012/107046
Research Article

Sleep Stage Classification Using Unsupervised Feature Learning

Center for Applied Autonomous Sensor Systems, Örebro University, 701 82 Örebro, Sweden

Received 17 February 2012; Revised 5 May 2012; Accepted 6 May 2012

Academic Editor: Juan Manuel Gorriz Saez

Copyright © 2012 Martin Längkvist et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Šušmákováemail and A. Krakovská, “Discrimination ability of individual measures used in sleep stages classification,” Artificial Intelligence in Medicine, vol. 44, no. 3, pp. 261–277, 2008. View at Google Scholar
  2. A. Flexer, G. Gruber, and G. Dorffner, “A reliable probabilistic sleep stager based on a single EEG signal,” Artificial Intelligence in Medicine, vol. 33, no. 3, pp. 199–207, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. L. Johnson, A. Lubin, P. Naitoh, C. Nute, and M. Austin, “Spectral analysis of the EEG of dominant and non-dominant alpha subjects during waking and sleeping,” Electroencephalography and Clinical Neurophysiology, vol. 26, no. 4, pp. 361–370, 1969. View at Google Scholar · View at Scopus
  4. J. Pardey, S. Roberts, L. Tarassenko, and J. Stradling, “A new approach to the analysis of the human sleep/wakefulness continuum,” Journal of Sleep Research, vol. 5, no. 4, pp. 201–210, 1996. View at Google Scholar · View at Scopus
  5. N. Schaltenbrand, R. Lengelle, M. Toussaint et al., “Sleep stage scoring using the neural network model: comparison between visual and automatic analysis in normal subjects and patients,” Sleep, vol. 19, no. 1, pp. 26–35, 1996. View at Google Scholar · View at Scopus
  6. H. G. Jo, J. Y. Park, C. K. Lee, S. K. An, and S. K. Yoo, “Genetic fuzzy classifier for sleep stage identification,” Computers in Biology and Medicine, vol. 40, no. 7, pp. 629–634, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Zoubek, S. Charbonnier, S. Lesecq, A. Buguet, and F. Chapotot, “A two-steps sleep/wake stages classifier taking into account artefacts in the polysomnographic signa,” in Proceedings of the 17th World Congress, International Federation of Automatic Control (IFAC '08), July 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Luo and W. Min, “Subject-adaptive real-time sleep stage classification based on conditional random field,” in Proceedings of the American Medical Informatics Association Annual Symposium (AMIA '07), pp. 488–492, 2007. View at Scopus
  9. T. Penzel, K. Kesper, V. Gross, H. F. Becker, and C. Vogelmeier, “Problems in automatic sleep scoring applied to sleep apnea,” in Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE EMBS '03), pp. 358–361, September 2003. View at Scopus
  10. G. E. Hinton, S. Osindero, and Y. W. Teh, “A fast learning algorithm for deep belief nets,” Neural Computation, vol. 18, no. 7, pp. 1527–1554, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-wise training of deep networks,” in Advances in Neural Information Processing Systems (NIPS '06), vol. 19, pp. 153–160, 2006.
  12. M. Ranzato, C. Poultney, S. Chopra, and Y. LeCun, “Efficient learning of sparse representations with an energy-based model,” in Proceedings of the Advances in Neural Information Processing Systems (NIPS '06), J. Platt, T. Hoffman, and B. Schölkopf, Eds., MIT Press, 2006.
  13. Y. Bengio and Y. LeCun, “Scaling learning algorithms towards AI,” in Large-Scale Kernel Machines, L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, Eds., MIT Press, 2007. View at Google Scholar
  14. Y. Bengio, “Learning deep architectures for AI,” Tech. Rep. 1312, Department of IRO, Universite de Montreal, 2007. View at Google Scholar
  15. I. Arel, D. Rose, and T. Karnowski, “Deep machine learning—a new frontier in artificial intelligence research,” IEEE Computational Intelligence Magazine, vol. 14, pp. 12–18, 2010. View at Google Scholar
  16. V. Nair and G. E. Hinton, “3-d object recognition with deep belief nets,” in Proceedings of the Advances in Neural Information Processing Systems (NIPS '06), 2006.
  17. G. Taylor, G. E. Hinton, and S. Roweis, “Modeling human motion using binary latent variables,” in Proceedings of the Advances in Neural Information Processing Systems, 2007.
  18. N. Jaitly and G. E. Hinton, “Learning a better representation of speech sound waves using restricted boltzmann machines,” in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '11), 2011.
  19. M. Längkvist and A. Loutfi, “Unsupervised feature learning for electronic nose data applied to bacteria identification in blood,” in NIPS Workshop on Deep Learning and Unsupervised Feature Learning, 2011.
  20. D. F. Wulsin, J. R. Gupta, R. Mani, J. A. Blanco, and B. Litt, “Modeling electroencephalography waveforms with semi-supervised deep belief nets: fast classification and anomaly measurement,” Journal of Neural Engineering, vol. 8, no. 3, Article ID 036015, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. G. E. Hinton, “Training products of experts by minimizing contrastive divergence,” Neural Computation, vol. 14, no. 8, pp. 1771–1800, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Rechtschaffen and A. Kales, A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects, U.S. Government Printing Office, Washington DC, USA, 1968.
  23. M. Hirshkowitz, “Standing on the shoulders of giants: the Standardized Sleep Manual after 30 years,” Sleep Medicine Reviews, vol. 4, no. 2, pp. 169–179, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. S. L. Himanen and J. Hasan, “Limitations of Rechtschaffen and Kales,” Sleep Medicine Reviews, vol. 4, no. 2, pp. 149–167, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. L. R. Rabiner and B. H. Juang, “An introduction to hidden markov models,” IEEE ASSP Magazine, vol. 3, no. 1, pp. 4–16, 1986. View at Google Scholar · View at Scopus
  26. G. E. Hinton, A Practical Guide to Training Restricted Boltzmann Machines, 2010.
  27. S. Charbonnier, L. Zoubek, S. Lesecq, and F. Chapotot, “Self-evaluated automatic classifier as a decision-support tool for sleep/wake staging,” Computers in Biology and Medicine, vol. 41, no. 6, pp. 380–389, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Schlögl, C. Keinrath, D. Zimmermann, R. Scherer, R. Leeb, and G. Pfurtscheller, “A fully automated correction method of EOG artifacts in EEG recordings,” Clinical Neurophysiology, vol. 118, no. 1, pp. 98–104, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. A. L. Goldberger, L. A. Amaral, L. Glass et al., “PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals,” Circulation, vol. 101, no. 23, pp. E215–220, 2000. View at Google Scholar · View at Scopus
  30. L. Zoubek, S. Charbonnier, S. Lesecq, A. Buguet, and F. Chapotot, “Feature selection for sleep/wake stages classification using data driven methods,” Biomedical Signal Processing and Control, vol. 2, no. 3, pp. 171–179, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. G. Huang, H. Lee, and E. Learned-Miller, “Learning hierarchical representations for face verification with convolutional deep belief networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR '12), 2012.
  32. D. Yu, L. Deng, I. Jang, P. Kudumakis, M. Sandler, and K. Kang, “Deep learning and its applications to signal and information processing,” IEEE Signal Processing Magazine, vol. 28, no. 1, pp. 145–154, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Ranzato, A. Krizhevsky, and G. E. Hinton, “Factored 3-way restricted boltzmann machines for modeling natural images,” in Proceedings of the 30th International Conference on Artificial Intelligence and Statistics, 2010.
  34. J. Ngiam, A. Khosla, M. Kim, H. Lee, and A. Y. Ng, “Multimodal deep learning,” in Proceedings of the 28th International Conference on Machine Learning, 2011.
  35. A. R. Osborne and A. Provenzale, “Finite correlation dimension for stochastic systems with power-law spectra,” Physica D, vol. 35, no. 3, pp. 357–381, 1989. View at Google Scholar · View at Scopus
  36. E. Pereda, A. Gamundi, R. Rial, and J. González, “Non-linear behaviour of human EEG: fractal exponent versus correlation dimension in awake and sleep stages,” Neuroscience Letters, vol. 250, no. 2, pp. 91–94, 1998. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Gasser, P. Baecher, and J. Moecks, “Transformations towards the normal distribution of broad band spectral parameters of the EEG,” Electroencephalography and Clinical Neurophysiology, vol. 53, no. 1, pp. 119–124, 1982. View at Publisher · View at Google Scholar · View at Scopus