Table of Contents
Advances in Artificial Neural Systems
Volume 2012 (2012), Article ID 517234, 12 pages
http://dx.doi.org/10.1155/2012/517234
Research Article

Methodological Triangulation Using Neural Networks for Business Research

The Business School, University of Colorado Denver, Denver, CO 80202, USA

Received 6 October 2011; Revised 7 December 2011; Accepted 8 December 2011

Academic Editor: Ping Feng Pai

Copyright © 2012 Steven Walczak. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Dybowski and V. Gant, “Artificial neural networks in pathology and medical laboratories,” The Lancet, vol. 346, no. 8984, pp. 1203–1207, 1995. View at Google Scholar · View at Scopus
  2. E. Y. Li, “Artificial neural networks and their business applications,” Information and Management, vol. 27, no. 5, pp. 303–313, 1994. View at Publisher · View at Google Scholar · View at Scopus
  3. S. H. Liao and C. H. Wen, “Artificial neural networks classification and clustering of methodologies and applications—literature analysis from 1995 to 2005,” Expert Systems with Applications, vol. 32, no. 1, pp. 1–11, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Montague and J. Morris, “Neural-network contributions in biotechnology,” Trends in Biotechnology, vol. 12, no. 8, pp. 312–324, 1994. View at Publisher · View at Google Scholar · View at Scopus
  5. K. A. Smith and J. N. D. Gupta, “Neural networks in business: techniques and applications for the operations researcher,” Computers and Operations Research, vol. 27, no. 11-12, pp. 1023–1044, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Widrow, D. E. Rumelhart, and M. A. Lehr, “Neural networks: applications in industry, business and science,” Communications of the ACM, vol. 37, no. 3, pp. 93–105, 1994. View at Publisher · View at Google Scholar · View at Scopus
  7. B. K. Wong, T. A. Bodnovich, and Y. Selvi, “Neural network applications in business: a review and analysis of the literature (1988-95),” Decision Support Systems, vol. 19, no. 4, pp. 301–320, 1997. View at Google Scholar · View at Scopus
  8. B. K. Wong, V. S. Lai, and J. Lam, “A bibliography of neural network business applications research: 1994–1998,” Computers and Operations Research, vol. 27, no. 11-12, pp. 1045–1076, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. F. Zahedi, “A meta-analysis of financial applications of neural networks,” International Journal of Computational Intelligence and Organization, vol. 1, no. 3, pp. 164–178, 1996. View at Google Scholar
  10. K. B. DeTienne, D. H. DeTienne, and S. A. Joshi, “Neural Networks as Statistical Tools for Business Researchers,” Organizational Research Methods, vol. 6, no. 2, pp. 236–265, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. G. P. Zhang, “Avoiding pitfalls in neural network research,” IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, vol. 37, no. 1, pp. 3–16, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Warner and M. Misra, “Understanding Neural Networks as Statistical Tools,” American Statistician, vol. 50, no. 4, pp. 284–293, 1996. View at Google Scholar · View at Scopus
  13. A. Bansal, R. J. Kauffman, and R. R. Weitz, “Comparing the modeling performance of regression and neural networks as data quality varies: a business value approach,” Journal of Management Information Systems, vol. 10, no. 1, pp. 11–32, 1993. View at Google Scholar · View at Scopus
  14. U. A. Kumar, “Comparison of neural networks and regression analysis: a new insight,” Expert Systems with Applications, vol. 29, no. 2, pp. 424–430, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. S. W. Palocsay and M. M. White, “Neural network modeling in cross-cultural research: a comparison with multiple regression,” Organizational Research Methods, vol. 7, no. 4, pp. 389–399, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Sakai, K. Kobayashi, S. I. Toyabe, N. Mandai, T. Kanda, and K. Akazawa, “Comparison of the levels of accuracy of an artificial neural network model and a logistic regression model for the diagnosis of acute appendicitis,” Journal of Medical Systems, vol. 31, no. 5, pp. 357–364, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Ghosh-Dastidar, H. Adeli, and N. Dadmehr, “Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection,” IEEE Transactions on Biomedical Engineering, vol. 54, no. 9, pp. 1545–1551, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. K. E. Graves and R. Nagarajah, “Uncertainty estimation using fuzzy measures for multiclass classification,” IEEE Transactions on Neural Networks, vol. 18, no. 1, pp. 128–140, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. R. C. Lacher, P. K. Coats, S. C. Sharma, and L. F. Fant, “A neural network for classifying the financial health of a firm,” European Journal of Operational Research, vol. 85, no. 1, pp. 53–65, 1995. View at Google Scholar · View at Scopus
  20. R. Sharda, “Neural networks for the MS/OR analyst: an application bibliography,” Interfaces, vol. 24, no. 2, pp. 116–130, 1994. View at Google Scholar
  21. V. Subramanian, M. S. Hung, and M. Y. Hu, “An experimental evaluation of neural networks for classification,” Computers and Operations Research, vol. 20, no. 7, pp. 769–782, 1993. View at Google Scholar · View at Scopus
  22. J. Farifteh, F. Van der Meer, C. Atzberger, and E. J. M. Carranza, “Quantitative analysis of salt-affected soil reflectance spectra: a comparison of two adaptive methods (PLSR and ANN),” Remote Sensing of Environment, vol. 110, no. 1, pp. 59–78, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. B. A. Jain and B. N. Nag, “Performance Evaluation of Neural Network Decision Models,” Journal of Management Information Systems, vol. 14, no. 2, pp. 201–216, 1997. View at Google Scholar · View at Scopus
  24. L. M. Salchenberger, E. M. Cinar, and N. A. Lash, “Neural networks: a new tool for predicting thrift failures,” Decision Sciences, vol. 23, no. 4, pp. 899–916, 1992. View at Publisher · View at Google Scholar
  25. I. Kurt, M. Ture, and A. T. Kurum, “Comparing performances of logistic regression, classification and regression tree, and neural networks for predicting coronary artery disease,” Expert Systems with Applications, vol. 34, no. 1, pp. 366–374, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. T. S. Lim, W. Y. Loh, and Y. S. Shih, “Comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms,” Machine Learning, vol. 40, no. 3, pp. 203–228, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Y. Tam and M. Y. Kiang, “Managerial applications of neural networks: the case of bank failure predictions,” Management Science, vol. 38, no. 3, pp. 926–947, 1992. View at Publisher · View at Google Scholar
  28. G. K. F. Tso and K. K. W. Yau, “Predicting electricity energy consumption: a comparison of regression analysis, decision tree and neural networks,” Energy, vol. 32, no. 9, pp. 1761–1768, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. L. Yang, C. W. Dawson, M. R. Brown, and M. Gell, “Neural network and GA approaches for dwelling fire occurrence prediction,” Knowledge-Based Systems, vol. 19, no. 4, pp. 213–219, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Mingers, “Combining IS research methods: towards a pluralist methodology,” Information Systems Research, vol. 12, no. 3, pp. 240–259, 2001. View at Google Scholar · View at Scopus
  31. A. Tashakkori and C. Teddlie, Mixed Methodology: Combining Qualitative and Quantitative Approaches, Sage, London, UK, 1998.
  32. S. C. Petter and M. J. Gallivan, “Toward a framework for classifying and guiding mixed method research in information systems,” in Proceedings of the 37th Hawaii International Conference on System Sciences, pp. 4061–4070, IEEE Computer Society, Los Alamitos, Calif, Usa, 2004.
  33. P. M. Podsakoff, S. B. MacKenzie, J. Y. Lee, and N. P. Podsakoff, “Common method biases in behavioral research: a critical review of the literature and recommended remedies,” Journal of Applied Psychology, vol. 88, no. 5, pp. 879–903, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. P. M. Podsakoff and D. W. Organ, “Self-reports in organizational research: problems and prospects,” Journal of Management, vol. 12, no. 4, pp. 531–554, 1986. View at Publisher · View at Google Scholar
  35. S. Walczak, “Evaluating medical decision making heuristics and other business heuristics with neural networks,” in Intelligent Decision Making an AI Based Approach, G. Phillips-Wren and L. C. Jain, Eds., chapter 10, Springer, New York, NY, USA, 2008. View at Google Scholar
  36. K. Hornik, “Approximation capabilities of multilayer feedforward networks,” Neural Networks, vol. 4, no. 2, pp. 251–257, 1991. View at Google Scholar · View at Scopus
  37. K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Networks, vol. 2, no. 5, pp. 359–366, 1989. View at Google Scholar · View at Scopus
  38. H. White, “Connectionist nonparametric regression: multilayer feedforward networks can learn arbitrary mappings,” Neural Networks, vol. 3, no. 5, pp. 535–549, 1990. View at Google Scholar · View at Scopus
  39. N. R. Swanson and H. White, “A model-selection approach to assessing the information in the term structure using linear models and artificial neural networks,” Journal of Business & Economic Statistics, vol. 13, no. 3, pp. 265–275, 1995. View at Google Scholar
  40. S. A. Billings and G. L. Zheng, “Radial basis function network configuration using genetic algorithms,” Neural Networks, vol. 8, no. 6, pp. 877–890, 1995. View at Publisher · View at Google Scholar · View at Scopus
  41. J. N. D. Gupta, R. S. Sexton, and E. A. Tunc, “Selecting Scheduling Heuristics Using Neural Networks,” INFORMS Journal on Computing, vol. 12, no. 2, pp. 150–162, 2000. View at Google Scholar · View at Scopus
  42. M. Rocha, P. Cortez, and J. Neves, “Evolution of neural networks for classification and regression,” Neurocomputing, vol. 70, no. 16-18, pp. 2809–2816, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. R. Sexton, “Identifying irrelevant variables in chaotic time series problems: using the genetic algorithm for training neural networks,” Journal of Computational Intelligence in Finance, vol. 6, no. 5, pp. 34–42, 1998. View at Google Scholar
  44. L. Yi-Hui, “Evolutionary neural network modeling for forecasting the field failure data of repairable systems,” Expert Systems with Applications, vol. 33, no. 4, pp. 1090–1096, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Tahai, S. Walczak, and J. T. Rigsby, “Improving artificial neural network performance through input variable selection,” in Applications of Fuzzy Sets and The Theory of Evidence to Accounting II, P. Siegel, K. Omer, A. deKorvin, and A. Zebda, Eds., pp. 277–292, JAI Press, Stamford, Conn, USA, 1998. View at Google Scholar
  46. Z. Hua, Y. Wang, X. Xu, B. Zhang, and L. Liang, “Predicting corporate financial distress based on integration of support vector machine and logistic regression,” Expert Systems with Applications, vol. 33, no. 2, pp. 434–440, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. R. J. Kuo, Y. L. An, H. S. Wang, and W. J. Chung, “Integration of self-organizing feature maps neural network and genetic K-means algorithm for market segmentation,” Expert Systems with Applications, vol. 30, no. 2, pp. 313–324, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. R. J. Kuo, L. M. Ho, and C. M. Hu, “Integration of self-organizing feature map and K-means algorithm for market segmentation,” Computers and Operations Research, vol. 29, no. 11, pp. 1475–1493, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. T. Marwala, “Bayesian training of neural networks using genetic programming,” Pattern Recognition Letters, vol. 28, no. 12, pp. 1452–1458, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. D. Dancey, Z. A. Bandar, and D. McLean, “Logistic model tree extraction from artificial neural networks,” IEEE Transactions on Systems, Man, and Cybernetics B, vol. 37, no. 4, pp. 794–802, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. K. L. Hsieh and Y. S. Lu, “Model construction and parameter effect for TFT-LCD process based on yield analysis by using ANNs and stepwise regression,” Expert Systems with Applications, vol. 34, no. 1, pp. 717–724, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. R. Setiono, J. Y. L. Thong, and C. S. Yap, “Symbolic rule extraction from neural networks An application to identifying organizations adopting IT,” Information and Management, vol. 34, no. 2, pp. 91–101, 1998. View at Google Scholar · View at Scopus
  53. T. G. Diettrich, “Ensemble methods in machine learning,” in Proceedings of the 1st International Workshop Multiple Classifier Systems, Lecture Notes in Computer Science, pp. 1–15, Springer Verlag, Cagliari, Italy, 2000.
  54. L. K. Hansen and P. Salamon, “Neural network ensembles,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 10, pp. 993–1001, 1990. View at Publisher · View at Google Scholar · View at Scopus
  55. G. P. Zhang and V. L. Berardi, “Time series forecasting with neural network ensembles: an application for exchange rate prediction,” Journal of the Operational Research Society, vol. 52, no. 6, pp. 652–664, 2001. View at Google Scholar · View at Scopus
  56. D. Chetchotsak and J. M. Twomey, “Combining neural networks for function approximation under conditions of sparse data: the biased regression approach,” International Journal of General Systems, vol. 36, no. 4, pp. 479–499, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. Z. H. Zhou and Y. Jiang, “NeC4.5: neural ensemble based C4.5,” IEEE Transactions on Knowledge and Data Engineering, vol. 16, no. 6, pp. 770–773, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. S. Walczak and M. Parthasarathy, “Modeling online service discontinuation with nonparametric agents,” Information Systems and e-Business Management, vol. 4, no. 1, pp. 49–70, 2006. View at Google Scholar
  59. R. Pakath and J. S. Zaveri, “Specifying critical inputs in a genetic algorithm-driven decision support system: an automated facility,” Decision Sciences, vol. 26, no. 6, pp. 749–771, 1995. View at Publisher · View at Google Scholar
  60. M. Smith, Neural Networks for Statistical Modeling, Van Nostrand Reinhold, New York, NY, USA, 1993.
  61. S. Walczak and N. Cerpa, “Heuristic principles for the design of artificial neural networks,” Information and Software Technology, vol. 41, no. 2, pp. 107–117, 1999. View at Google Scholar · View at Scopus
  62. H. Z. Huang, R. Bo, and W. Chen, “An integrated computational intelligence approach to product concept generation and evaluation,” Mechanism and Machine Theory, vol. 41, no. 5, pp. 567–583, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. S. Walczak, “An empirical analysis of data requirements for financial forecasting with neural networks,” Journal of Management Information Systems, vol. 17, no. 4, pp. 203–222, 2001. View at Google Scholar · View at Scopus
  64. A. Durand, O. Devos, C. Ruckebusch, and J. P. Huvenne, “Genetic algorithm optimisation combined with partial least squares regression and mutual information variable selection procedures in near-infrared quantitative analysis of cotton-viscose textiles,” Analytica Chimica Acta, vol. 595, no. 1-2, pp. 72–79, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. F. D. Davis, “Perceived usefulness, perceived ease of use, and user acceptance of information technology,” MIS Quarterly: Management Information Systems, vol. 13, no. 3, pp. 319–339, 1989. View at Google Scholar · View at Scopus
  66. G. M. Marakas, M. Y. Yi, and R. D. Johnson, “The multilevel and multifaceted character of computer self-efficacy: toward clarification of the construct and an integrative framework for research,” Information Systems Research, vol. 9, no. 2, pp. 126–163, 1998. View at Google Scholar · View at Scopus
  67. J. J. Martocchio, “Effects of Conceptions of Ability on Anxiety, Self-Efficacy, and Learning in Training,” Journal of Applied Psychology, vol. 79, no. 6, pp. 819–825, 1994. View at Google Scholar · View at Scopus
  68. R. T. Christoph, G. A. Schoenfeld Jr, and J. W. Tansky, “Overcoming barriers to training utilizing technology: the influence of self-efficacy factors on multimedia-based training receptiveness,” Human Resource Development Quarterly, vol. 9, no. 1, pp. 25–38, 1998. View at Google Scholar
  69. M. E. Gist, C. Schwoerer, and B. Rosen, “Effects of Alternative Training Methods on Self-Efficacy and Performance in Computer Software Training,” Journal of Applied Psychology, vol. 74, no. 6, pp. 884–891, 1989. View at Google Scholar · View at Scopus
  70. J. E. Mathieu, J. W. Martineau, and S. I. Tannenbaum, “Individual and situational influences on the development of self-efficacy: implications for training effectiveness,” Personnel Psychology, vol. 46, no. 1, pp. 125–147, 1993. View at Publisher · View at Google Scholar
  71. R. Agarwal, V. Sambamurthy, and R. M. Stair, “Research report: the evolving relationship between general and specific computer self-efficacy—an empirical assessment,” Information Systems Research, vol. 11, no. 4, pp. 418–430, 2000. View at Google Scholar · View at Scopus
  72. W. Hong, J. Y. L. Thong, W. M. Wong, and K. Y. Tam, “Determinants of user acceptance of digital libraries: an empirical examination of individual differences and system characteristics,” Journal of Management Information Systems, vol. 18, no. 3, pp. 97–124, 2001. View at Google Scholar · View at Scopus
  73. V. Venkatesh, “Determinants of perceived ease of use: integrating control, intrinsic motivation, and emotion into the technology acceptance model,” Information Systems Research, vol. 11, no. 4, pp. 342–365, 2000. View at Google Scholar · View at Scopus
  74. M. Igbaria and J. Iivari, “The effects of self-efficacy on computer usage,” Omega, vol. 23, no. 6, pp. 587–605, 1995. View at Publisher · View at Google Scholar · View at Scopus
  75. D. R. Compeau and C. A. Higgins, “Computer self-efficacy: development of a measure and initial test,” MIS Quarterly: Management Information Systems, vol. 19, no. 2, pp. 189–210, 1995. View at Google Scholar · View at Scopus
  76. B. Hasan, “The influence of specific computer experiences on computer self-efficacy beliefs,” Computers in Human Behavior, vol. 19, no. 4, pp. 443–450, 2003. View at Publisher · View at Google Scholar · View at Scopus
  77. R. D. Johnson and G. M. Marakas, “research report: the role of behavioral modeling in computer skills acquisition—toward refinement of the model,” Information Systems Research, vol. 11, no. 4, pp. 402–417, 2000. View at Google Scholar · View at Scopus
  78. R. W. Stone and J. W. Henry, “The roles of computer self-efficacy and outcome expectancy in influencing the computer end-user's organizational commitment,” Journal of End User Computing, vol. 15, no. 1, pp. 38–53, 2003. View at Google Scholar · View at Scopus
  79. S. Taylor and P. Todd, “Assessing IT usage: the role of prior experience,” MIS Quarterly: Management Information Systems, vol. 19, no. 4, pp. 561–568, 1995. View at Google Scholar · View at Scopus
  80. R. Torkzadeh, K. Pflughoeft, and L. Hall, “Computer self-efficacy, training effectiveness and user attitudes: an empirical study,” Behaviour and Information Technology, vol. 18, no. 4, pp. 299–309, 1999. View at Publisher · View at Google Scholar · View at Scopus
  81. J. B. Thatcher and P. L. Perrewé, “An empirical examination of individual traits as antecedents to computer anxiety and computer self-efficacy,” MIS Quarterly: Management Information Systems, vol. 26, no. 4, pp. 381–396, 2002. View at Google Scholar · View at Scopus
  82. S. Taylor and P. A. Todd, “Understanding information technology usage: a test of competing models,” Information Systems Research, vol. 6, no. 2, pp. 144–176, 1995. View at Google Scholar · View at Scopus
  83. D. S. Staples, J. S. Hulland, and C. A. Higgins, “A Self-Efficacy Theory Explanation for the Management of Remote Workers in Virtual Organizations,” Organization Science, vol. 10, no. 6, pp. 758–776, 1999. View at Google Scholar · View at Scopus
  84. R. Agarwal and J. Prasad, “A Conceptual and Operational Definition of Personal Innovativeness in the Domain of Information Technology,” Information Systems Research, vol. 9, no. 2, pp. 204–215, 1998. View at Google Scholar · View at Scopus
  85. J. Webster and H. Ho, “Audience engagement in multimedia presentations,” Data Base for Advances in Information Systems, vol. 28, no. 2, pp. 63–76, 1997. View at Google Scholar · View at Scopus
  86. J. Webster and J. J. Martocchio, “Microcomputer playfulness: development of a measure with workplace implications,” MIS Quarterly: Management Information Systems, vol. 16, no. 2, pp. 201–224, 1992. View at Google Scholar · View at Scopus
  87. F. D. Davis, R. P. Bagozzi, and P. R. Warshaw, “Extrinsic and intrinsic motivation to use computers in the workplace,” Journal of Applied Social Psychology, vol. 22, no. 14, pp. 1111–1132, 1992. View at Publisher · View at Google Scholar
  88. J. F. Hair, W. C. Black, B. J. Babin, and R. E. Anderson, Multivariate Data Analysis, Prentice Hall, Upper Saddle River, NJ, USA, 7th edition, 2010.
  89. W. W. Chin, “The partial least squares approach for structural equation modeling,” in Modern Methods for Business Research, G. A. Marcoulides, Ed., pp. 295–336, Lawrence Erlbaum Associates, Hillsdale, NJ, USA, 1998. View at Google Scholar
  90. E. Barnard and L. Wessels, “Extrapolation and interpolation in neural network classifiers,” IEEE Control Systems, vol. 12, no. 5, pp. 50–53, 1992. View at Google Scholar
  91. B. Efron, The Jackknife, the Bootstrap, and Other Resampling Plans, SIAM, Philadelphia, Pa, USA, 1982.
  92. F. Höppner, F. Klawonn, R. Kruse, and T. Runkler, Fuzzy Cluster Analysis, Wiley, New York, NY, USA, 1999.
  93. L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp. 338–353, 1965. View at Google Scholar · View at Scopus
  94. M. Gist, “Self-efficacy: implications for organizational behavior and human resource management,” Academy of Management Review, vol. 12, no. 3, pp. 472–485, 1987. View at Google Scholar
  95. T. H. Lee, H. White, and C. W. J. Granger, “Testing for neglected nonlinearity in time series models. A comparison of neural network methods and alternative tests,” Journal of Econometrics, vol. 56, no. 3, pp. 269–290, 1993. View at Google Scholar · View at Scopus
  96. D. Scarborough and M. J. Somers, Neural Networks in Organizational Research, American Psychological Association, Washington, DC, USA, 2006.
  97. M. J. Somers, “Thinking differently: assessing nonlinearities in the relationship between work attitudes and job performance using a Bayesian neural network,” Journal of Occupational and Organizational Psychology, vol. 74, no. 1, pp. 47–61, 2001. View at Publisher · View at Google Scholar · View at Scopus
  98. M. S. Hung, M. Y. Hu, M. S. Shanker, and B. E. Patuwo, “Estimating posterior probabilities in classification problems with neural networks,” International Journal of Computational Intelligence and Organization, vol. 1, no. 1, pp. 49–60, 1996. View at Google Scholar
  99. R. Rustum and A. J. Adeloye, “Replacing outliers and missing values from activated sludge data using kohonen self-organizing map,” Journal of Environmental Engineering, vol. 133, no. 9, pp. 909–916, 2007. View at Publisher · View at Google Scholar · View at Scopus