Table of Contents
Advances in Artificial Neural Systems
Volume 2013, Article ID 240564, 14 pages
http://dx.doi.org/10.1155/2013/240564
Research Article

A Unified Framework for GPS Code and Carrier-Phase Multipath Mitigation Using Support Vector Regression

1University of Information Technology, Km 20, Ha Noi Highway, Linh Trung Ward, Thu Duc, HCMC 70000, Vietnam
2Singapore Institute of Technology, 25 North Bridge Road, Singapore 179104
3School of Information Science and Technology, University of Science and Technology of China, No. 443 Huangshan Road, Hefei, Anhui 230027, China

Received 1 October 2012; Accepted 14 January 2013

Academic Editor: Paolo Gastaldo

Copyright © 2013 Quoc-Huy Phan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Hoffmann-Wellenhof, H. Lichtenegger, and J. Collins, GPS: Theory and Practice, Springer, Wien, Austria, 2001.
  2. A. Leick, GPS Satellite Surveying, 3rdJohn Wiley & Sons, New York, NY, USA, 2004.
  3. G. J. Bishop, D. S. Coco, P. H. Kappler, and E. A. Holland, “Studies and performance of a new technique for mitigation of pseudorange multipath effects in GPS ground stations,” in Proceedings of the 1994 National Technical Meeting of The Institute of Navigation, pp. 231–242, San Diego, Calif, USA, January 1994. View at Scopus
  4. N. Kubo and A. Yasuda, “How multipath error influences on ambiguity resolution,” in Proceedings of the 16th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS/GNSS '03), pp. 2142–2150, Portland, Ore, USA, 2003.
  5. Y. Zhang, ,High performance differential global positioning system for long baseline application [Ph.D. thesis], Ohio University, 2005.
  6. B. Parkinson and P. Enge, “Differential GPS,” in Global Positioning System, B. Parkinson, J. Spilker, P. Axelrad, and P. Enge, Eds., vol. 2, pp. 3–49, American Institute of Aeronautics and Astronautics, Washington, DC, USA, 1996. View at Google Scholar
  7. Y. Zhang and C. Bartone, “Multipath mitigation in the frequency domain,” in Proceedings of the IEEE/ION Position Location and Navigation Symposium (PLANS '04), pp. 486–495, Athens, Ga, USA, April 2004. View at Scopus
  8. M. Elhabiby, A. El-Ghazouly, and N. El-Sheimy, “A new wavelet-based multipath mitigation technique,” in Proceedings of the 21st International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS '08), pp. 625–631, Savannah, Ga, USA, September 2008. View at Scopus
  9. Y. Zhang and C. Bartone, “Real-time multipath mitigation with WaveSmooth technique using wavelets,” in Proceedings of the 17th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS '04), pp. 1181–1194, Long Beach, Calif, USA, September 2004. View at Scopus
  10. A. Bilich, K. M. Larson, and P. Axelrad, “Modeling GPS phase multipath with SNR: case study from the Salar de Uyuni, Boliva,” Journal of Geophysical Research B, vol. 113, no. 4, Article ID B04401, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Rost and L. Wanninger, “Carrier phase multipath mitigation based on GNSS signal quality measurements,” Journal of Applied Geodesy, vol. 3, no. 2, pp. 81–87, 2009. View at Publisher · View at Google Scholar
  12. P. Y. Hwang, G. A. McGraw, and J. R. Bader, “Enhanced Differential GPS carrier-smoothed code processing using dual-frequency measurements,” Navigation, vol. 46, no. 2, pp. 127–137, 1999. View at Google Scholar · View at Scopus
  13. P. Misra and P. Enge, Global Positioning System: Signals, Measurements, and Performance, IGanga-Jamuna Press, Lincoln, Mass, USA, 2nd edition, 2006.
  14. L. Ge, S. Han, and C. Rizos, “Multipath mitigation of continuous GPS measurements using an adaptive filter,” GPS Solutions, vol. 4, pp. 19–30, 2000. View at Google Scholar · View at Scopus
  15. H. Liu, X. Li, L. Ge, C. Rizos, and F. Wang, “Variable length LMS adaptive filter for carrier phase multipath mitigation,” GPS Solutions, vol. 15, no. 1, pp. 29–38, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Axelrad, K. Larson, and B. Jones, “Use of the correct satellite repeat period to characterize and reduce site-specific multipath errors,” in Proceedings of the 18th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS '05), pp. 2638–2648, Long Beach, Calif, USA, September 2005. View at Scopus
  17. K. M. Larson, A. Bilich, and P. Axelrad, “Improving the precision of high-rate GPS,” Journal of Geophysical Research, vol. 112, no. B5, 2007. View at Publisher · View at Google Scholar
  18. P. Zhong, X. Ding, L. Yuan, Y. Xu, K. Kwok, and Y. Chen, “Sidereal filtering based on single differences for mitigating GPS multipath effects on short baselines,” Journal of Geodesy, vol. 84, no. 2, pp. 145–158, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. Q. H. Phan and S. L. Tan, “Mitigation of GPS periodic multipath using nonlinear regression,” in Proceedings of 19th European Signal Processing Conference (EUSIPCO '11), pp. 1795–1799, Barcelona, Spain, 2011.
  20. Q. H. Phan, S. L. Tan, and I. McLoughlin, “GPS multipath mitigation: a nonlinear regression approach,” GPS Solutions, 2012. View at Publisher · View at Google Scholar
  21. B. Parkinson, “Introduction and heritage of NAVSTAR, the Global Positioning System,” in Global Positioning System, B. Parkinson, J. Spilker, P. Axelrad, and P. Enge, Eds., vol. 1, pp. 3–28, American Institute of Aeronautics and Astronautics, Washington, DC, USA, 1996. View at Google Scholar
  22. A. Bilich and K. M. Larson, “Mapping the GPS multipath environment using the signal-to-noise ratio (SNR),” Radio Science, vol. 42, no. 6, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Bock, R. M. Nikolaidis, P. J. de Jonge, and M. Bevis, “Instantaneous geodetic positioning at medium distances with the Global Positioning System,” Journal of Geophysical Research B, vol. 105, no. 12, pp. 28223–28253, 2000. View at Google Scholar · View at Scopus
  24. J. F. Genrich and Y. Bock, “Rapid resolution of crustal motion at short ranges with the Global Positioning System,” Journal of Geophysical Research, vol. 97, no. 3, pp. 3261–3269, 1992. View at Google Scholar · View at Scopus
  25. A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,” Statistics and Computing, vol. 14, no. 3, pp. 199–222, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. V. Vapnik, The Nature of Statistical Learning Theory, Springer, New York, NY, USA, 1995.
  27. C. M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, Oxford, UK, 1996.
  28. J. Dickman, C. Bartone, Y. Zhang, and B. Thornburg, “Characterization and performance of a prototype wideband airport pseudolite multipath limiting antenna for the local area augmentation system,” in Proceedings of the 2003 National Technical Meeting of The Institute of Navigation, pp. 783–793, Anaheim, Calif, USA, 2003.
  29. K. Choi, A. Bilich, K. M. Larson, and P. Axelrad, “Modified sidereal filtering: implications for high-rate GPS positioning,” Geophysical Research Letters, vol. 31, no. 22, pp. 1–4, 2004. View at Publisher · View at Google Scholar · View at Scopus