Table of Contents
Advances in Artificial Neural Systems
Volume 2013 (2013), Article ID 485913, 13 pages
http://dx.doi.org/10.1155/2013/485913
Research Article

Using Ensemble of Neural Networks to Learn Stochastic Convection Parameterizations for Climate and Numerical Weather Prediction Models from Data Simulated by a Cloud Resolving Model

1National Centers for Environmental Prediction, NOAA, College Park, MD 20740, USA
2Earth System Sciences Interdisciplinary Center, University of Maryland, College Park, MD 20740, USA
3Geophysical Fluid Dynamics Laboratory, NOAA, Princeton, NJ 08540, USA
4Brookhaven National Laboratory, Upton, NY 11973, USA

Received 28 November 2012; Accepted 11 March 2013

Academic Editor: Ozgur Kisi

Copyright © 2013 Vladimir M. Krasnopolsky et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. J. Donner and P. J. Rasch, “Cumulus initialization in a global model for numerical weather prediction,” Monthly Weather Review, vol. 117, pp. 2654–2671, 1989. View at Google Scholar
  2. P. J. Rasch, J. Feichter, K. Law et al., “A comparison of scavenging and deposition processes in global models: results from the WCRP Cambridge workshop of 1995,” Tellus B, vol. 52, no. 4, pp. 1025–1056, 2000. View at Google Scholar · View at Scopus
  3. P. J. Rasch, M. J. Stevens, L. Ricciardulli et al., “A characterization of tropical transient activity in the CAM3 atmospheric hydrologic cycle,” Journal of Climate, vol. 19, no. 11, pp. 2222–2242, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. V. Krasnopolsky, M. Fox-Rabinovitz, A. Belochitski, P. Rasch, P. Blossey, and Y. Kogan, “Development of neural network convection parameterizations for climate and NWP models using Cloud Resolving Model simulations,” NCEP Office Note 469, 2011, http://www.emc.ncep.noaa.gov/officenotes/newernotes/on469.pdf. View at Google Scholar
  5. T. N. Palmer and P. D. Williams, “Introduction. Stochastic physics and climate modeling,” Philosophical Transactions of the Royal Society A, vol. 366, pp. 2421–2427, 2008. View at Publisher · View at Google Scholar
  6. M. F. Khairoutdinov and D. A. Randall, “A cloud resolving model as a cloud parameterization in the NCAR community climate system model: preliminary results,” Geophysical Research Letters, vol. 28, no. 18, pp. 3617–3620, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. M. F. Khairoutdinov and D. A. Randall, “Cloud resolving modeling of the ARM summer 1997 IOP: model formulation, results, uncertainties, and sensitivities,” Journal of the Atmospheric Sciences, vol. 60, no. 4, pp. 607–625, 2003. View at Google Scholar · View at Scopus
  8. F. Guichard, J. C. Petch, J. L. Redelsperger et al., “Modelling the diurnal cycle of deep precipitating convection over land with cloud-resolving models and single-column models,” Quarterly Journal of the Royal Meteorological Society, vol. 130, no. 604, pp. 3139–3172, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. V. M. Krasnopolsky, M. S. Fox-Rabinovitz, and D. V. Chalikov, “New approach to calculation of atmospheric model physics: accurate and fast neural network emulation of longwave radiation in a climate model,” Monthly Weather Review, vol. 133, no. 5, pp. 1370–1383, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. V. M. Krasnopolsky, M. S. Fox-Rabinovitz, and A. A. Belochitski, “Decadal climate simulations using accurate and fast neural network emulation of full, long- and short wave, radiation,” Monthly Weather Review, vol. 136, pp. 3683–3695, 2008. View at Publisher · View at Google Scholar
  11. V. M. Krasnopolsky, M. S. Fox-Rabinovitz, Y. T. Hou, S. J. Lord, and A. A. Belochitski, “Accurate and fast neural network emulations of model radiation for the NCEP coupled climate forecast system: climate simulations and seasonal predictions,” Monthly Weather Review, vol. 138, no. 5, pp. 1822–1842, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. V. M. Krasnopolsky, “Neural network emulations for complex multidimensional geophysical mappings: applications of neural network techniques to atmospheric and oceanic satellite retrievals and numerical modeling,” Reviews of Geophysics, vol. 45, Article ID RG3009, 2007. View at Publisher · View at Google Scholar
  13. V. Krasnopolsky, “Neural network applications to developing hybrid atmospheric and oceanic numerical models,” in Artificial Intelligence Methods in the Environmental Sciences, S. E. Haupt, A. Pasini, and C. Marzban, Eds., pp. 217–234, Springer, 2009. View at Google Scholar
  14. V. Krasnopolsky, “Neural network applications to solve forward and inverse problems in atmospheric and oceanic satellite remote sensing,” in Artificial Intelligence Methods in the Environmental Sciences, S. E. Haupt, A. Pasini, and C. Marzban, Eds., pp. 191–205, Springer, 2009. View at Google Scholar
  15. D. Nguyen and B. Widrow, “Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights,” in Proceedings of the International Joint Conference on Neural Networks (IJCNN '90), vol. 3, pp. 21–26, San Diego, Calif, USA, June 1990. View at Scopus
  16. E. Kalnay, M. Kanamitsu, R. Kistler et al., “The NCEP/NCAR 40-year reanalysis project,” Bulletin of the American Meteorological Society, vol. 77, pp. 437–471, 1996. View at Google Scholar
  17. S. Saha, S. Moorthi, H.-L. Pan et al., “The NCEP climate forecast system reanalysis,” Bulletin of the American Meteorological Society, vol. 91, pp. 1015–1057, 2010. View at Publisher · View at Google Scholar
  18. V. M. Krasnopolsky, M. S. Fox-Rabinovitz, H. L. Tolman, and A. A. Belochitski, “Neural network approach for robust and fast calculation of physical processes in numerical environmental models: compound parameterization with a quality control of larger errors,” Neural Networks, vol. 21, no. 2-3, pp. 535–543, 2008. View at Publisher · View at Google Scholar · View at Scopus