Table of Contents
Advances in Artificial Neural Systems
Volume 2013, Article ID 539570, 7 pages
Research Article

Intelligent Systems Developed for the Early Detection of Chronic Kidney Disease

1Department of Information Management, Fu Jen Catholic University, Xinzhuang District, New Taipei City 24205, Taiwan
2Office of Computer Processing, En Chu Kong Hospital, Sanxia District, New Taipei City 23702, Taiwan
3Office of Information Processing, Cardinal Tien Hospital, Xindian District, New Taipei City 231, Taiwan

Received 10 August 2012; Revised 5 November 2012; Accepted 5 November 2012

Academic Editor: Ping Feng Pai

Copyright © 2013 Ruey Kei Chiu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Department of Health (DOH), “The statistical data of the causes of civilian mortality,” Taiwan, 2010,
  2. A. S. Levey, P. E. De Jong, J. Coresh et al., “The definition, classification, and prognosis of chronic kidney disease: a KDIGO controversies conference report,” Kidney International, vol. 80, no. 1, pp. 17–28, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. National Kidney Foundation (NKF), “KDOQI clinical practice guidelines for chronic kidney disease: evaluation, classification and stratification,” American Journal of Kidney Diseases, vol. 39, pp. S1–S266, 2002. View at Google Scholar
  4. A. S. Levey, T. Greene, J. W. Kusek, and G. L. Beck, “A simplified equation to predict glomerular filtration rate from serum creatinine,” Journal American Society for Nephrology, vol. 11, article 155A, 2000. View at Google Scholar
  5. A. S. Levey, K. U. Eckardt, Y. Tsukamoto et al., “Definition and classification of chronic kidney disease: a position statement from KIidney Disease: Improving Global Outcomes (KDIGO),” Kidney International, vol. 67, no. 6, pp. 2089–2100, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Kriesel, “A brief introduction to neural networks,” 2011,
  7. K. Matsushita, B. K. Mahmoodi, M. Woodward et al., “Comparison of risk prediction using the CKD-EPI equation and the MDRD study equation for estimated Glomerular filtration rate,” The Journal of the American Medical Association, vol. 307, no. 18, pp. 1941–1951, 2012. View at Google Scholar
  8. R. K. Chiu, C. I. Huang, and Y. C. Chang, “The study on the construction of intelligence-based decision support system for diabetes diagnosis and risk evaluation,” Journal of Medical Informatics, vol. 19, no. 3, pp. 1–24, 2010. View at Google Scholar
  9. G. Arulampalam and A. Bouzerdoum, “Training shunting inhibitory artificial neural networks as classifiers,” Neural Network World, vol. 10, no. 3, pp. 333–350, 2000. View at Google Scholar
  10. G. Arulampalam and A. Bouzerdoum, “A generalized feedforward neural network classifier,” in Proceedings of the International Joint Conference on Neural Networks, pp. 1429–1434, July 2003. View at Scopus
  11. R. Jacobs, M. Jordan, S. Nowlan, and G. Hinton, “Adaptive mixtures of local experts,” Neural Computation, vol. 3, no. 1, pp. 79–87, 1991. View at Google Scholar