Table of Contents
Advances in Artificial Neural Systems
Volume 2015, Article ID 157983, 8 pages
Research Article

Generalisation over Details: The Unsuitability of Supervised Backpropagation Networks for Tetris

School of Engineering and ICT, University of Tasmania, Private Bag 87, Sandy Bay, TAS 7001, Australia

Received 19 January 2015; Accepted 1 April 2015

Academic Editor: Matt Aitkenhead

Copyright © 2015 Ian J. Lewis and Sebastian L. Beswick. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


We demonstrate the unsuitability of Artificial Neural Networks (ANNs) to the game of Tetris and show that their great strength, namely, their ability of generalization, is the ultimate cause. This work describes a variety of attempts at applying the Supervised Learning approach to Tetris and demonstrates that these approaches (resoundedly) fail to reach the level of performance of hand-crafted Tetris solving algorithms. We examine the reasons behind this failure and also demonstrate some interesting auxiliary results. We show that training a separate network for each Tetris piece tends to outperform the training of a single network for all pieces; training with randomly generated rows tends to increase the performance of the networks; networks trained on smaller board widths and then extended to play on bigger boards failed to show any evidence of learning, and we demonstrate that ANNs trained via Supervised Learning are ultimately ill-suited to Tetris.