Table of Contents
Advances in Biology
Volume 2014 (2014), Article ID 105898, 11 pages
http://dx.doi.org/10.1155/2014/105898
Review Article

The Role of the Actin Cytoskeleton and Lipid Rafts in the Localization and Function of the ABCC1 Transporter

Department of Cell Biology, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands

Received 2 February 2014; Revised 10 April 2014; Accepted 11 April 2014; Published 5 May 2014

Academic Editor: Yun-Wei Chiang

Copyright © 2014 Jan Willem Kok et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Orlowski, S. Martin, and A. Escargueil, “P-glycoprotein and “lipid rafts”: some ambiguous mutual relationships (floating on them, building them or meeting them by chance?),” Cellular and Molecular Life Sciences, vol. 63, no. 9, pp. 1038–1059, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. J. W. Kok, K. Klappe, I. Hummel, B.-J. Kroesen, H. Sietsma, and P. Meszaros, “Are lipid rafts involved in ABC transporter-mediated drug resistance of tumor cells?” Trends in Glycoscience and Glycotechnology, vol. 20, no. 116, pp. 373–397, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Klappe, I. Hummel, D. Hoekstra, and J. W. Kok, “Lipid dependence of ABC transporter localization and function,” Chemistry and Physics of Lipids, vol. 161, no. 2, pp. 57–64, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. L. J. Pike, “Lipid rafts: heterogeneity on the high seas,” Biochemical Journal, vol. 378, no. 2, pp. 281–292, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. J. W. J. Hinrichs, K. Klappe, I. Hummel, and J. W. Kok, “ATP-binding cassette transporters are enriched in non-caveolar detergent-insoluble glycosphingolipid-enriched membrane domains (DIGs) in human multidrug-resistant cancer cells,” The Journal of Biological Chemistry, vol. 279, no. 7, pp. 5734–5738, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. J. W. J. Hinrichs, K. Klappe, M. van Riezen, and J. W. Kok, “Drug resistance-associated changes in sphingolipids and ABC transporters occur in different regions of membrane domains,” Journal of Lipid Research, vol. 46, no. 11, pp. 2367–2376, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. J. W. J. Hinrichs, K. Klappe, and J. W. Kok, “Rafts as missing link between multidrug resistance and sphingolipid metabolism,” The Journal of Membrane Biology, vol. 203, no. 2, pp. 57–64, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. J. W. Kok, Veldman, R. J. Klappe K, C. M. Filipeanu, and M. Müller, “Differential expression of sphingolipids in MRP1 overexpressing HT29 cells,” International Journal of Cancer, vol. 87, no. 2, pp. 172–178, 2000. View at Google Scholar
  9. R. J. Veldman, K. Klappe, J. Hinrichs et al., “Altered sphingolipid metabolism in multidrug-resistant ovarian cancer cells is due to uncoupling of glycolipid biosynthesis in the Golgi apparatus,” The FASEB Journal, vol. 16, no. 9, pp. 1111–1113, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Klappe, J. W. J. Hinrichs, B.-J. Kroesen, H. Sietsma, and J. W. Kok, “MRP1 and glucosylceramide are coordinately over expressed and enriched in rafts during multidrug resistance acquisition in colon cancer cells,” International Journal of Cancer, vol. 110, no. 4, pp. 511–522, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. A.-J. Dijkhuis, J. Douwes, W. Kamps, H. Sietsma, and J. W. Kok, “Differential expression of sphingolipids in P-glycoprotein or multidrug resistance-related protein 1 expressing human neuroblastoma cell lines,” FEBS Letters, vol. 548, no. 1–3, pp. 28–32, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. I. Hummel, K. Klappe, and J. W. Kok, “Up-regulation of lactosylceramide synthase in MDR1 overexpressing human liver tumour cells,” FEBS Letters, vol. 579, no. 16, pp. 3381–3384, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. V. Gouaze-Andersson and M. C. Cabot, “Glycosphingolipids and drug resistance,” Biochimica et Biophysica Acta, vol. 1758, no. 12, pp. 2096–2103, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. A.-J. Dijkhuis, K. Klappe, W. Kamps, H. Sietsma, and J. W. Kok, “Gangliosides do not affect ABC transporter function in human neuroblastoma cells,” Journal of Lipid Research, vol. 47, no. 6, pp. 1187–1195, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. C. R. Bollinger, V. Teichgräber, and E. Gulbins, “Ceramide-enriched membrane domains,” Biochimica et Biophysica Acta, vol. 1746, no. 3, pp. 284–294, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. S. A. Morad and M. C. Cabot, “Ceramide-orchestrated signaling in cancer cells,” Nature Reviews Cancer, vol. 13, no. 1, pp. 51–65, 2013. View at Publisher · View at Google Scholar
  17. K. Klappe, A.-J. Dijkhuis, I. Hummel et al., “Extensive sphingolipid depletion does not affect lipid raft integrity or lipid raft localization and efflux function of the ABC transporter MRP1,” Biochemical Journal, vol. 430, no. 3, pp. 519–529, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Meszaros, K. Klappe, A. van Dam et al., “Long term myriocin treatment increases MRP1 transport activity,” The International Journal of Biochemistry & Cell Biology, vol. 45, no. 2, pp. 326–334, 2012. View at Publisher · View at Google Scholar
  19. K. Yunomae, H. Arima, F. Hirayama, and K. Uekama, “Involvement of cholesterol in the inhibitory effect of dimethyl-β-cyclodextrin on P-glycoprotein and MRP2 function in Caco-2 cells,” FEBS Letters, vol. 536, no. 1–3, pp. 225–231, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Arima, K. Yunomae, T. Morikawa, F. Hirayama, and K. Uekama, “Contribution of cholesterol and phospholipids to inhibitory effect of dimethyl-β-cyclodextrin on efflux function of P-glycoprotein and multidrug resistance-associated protein 2 in vinblastine-resistant Caco-2 cell monolayers,” Pharmaceutical Research, vol. 21, no. 4, pp. 625–634, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Meszaros, K. Klappe, I. Hummel, D. Hoekstra, and J. W. Kok, “Function of MRP1/ABCC1 is not dependent on cholesterol or cholesterol-stabilized lipid rafts,” Biochemical Journal, vol. 437, no. 3, pp. 483–491, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. G. R. Chichili and W. Rodgers, “Cytoskeleton—membrane interactions in membrane raft structure,” Cellular and Molecular Life Sciences, vol. 66, no. 14, pp. 2319–2328, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. G. R. Chichili and W. Rodgers, “Clustering of membrane raft proteins by the actin cytoskeleton,” The Journal of Biological Chemistry, vol. 282, no. 50, pp. 36682–36691, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. I. Hummel, K. Klappe, C. Ercan, and J. W. Kok, “Multidrug resistance-related protein 1 (MRP1) function and localization depend on cortical actin,” Molecular Pharmacology, vol. 79, no. 2, pp. 229–240, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Kikuchi, M. Hata, K. Fukumoto et al., “Radixin deficiency causes conjugated hyperbilirubinemia with loss of Mrp2 from bile canalicular membranes,” Nature Genetics, vol. 31, no. 3, pp. 320–325, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. Q. Yang, R. Onuki, C. Nakai, and Y. Sugiyama, “Ezrin and radixin both regulate the apical membrane localization of ABCC2 (MRP2) in human intestinal epithelial Caco-2 cells,” Experimental Cell Research, vol. 313, no. 16, pp. 3517–3525, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. Z. Bacso, H. Nagy, K. Goda et al., “Raft and cytoskeleton associations of an ABC transporter: P-glycoprotein,” Cytometry A, vol. 61, no. 2, pp. 105–116, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. F. Luciani, A. Molinari, F. Lozupone et al., “P-glycoprotein-actin association through ERM family proteins: a role in P-glycoprotein function in human cells of lymphoid origin,” Blood, vol. 99, no. 2, pp. 641–648, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. D. Brambilla, S. Zamboni, C. Federici et al., “P-glycoprotein binds to ezrin at amino acid residues 149–242 in the FERM domain and plays a key role in the multidrug resistance of human osteosarcoma,” International Journal of Cancer, vol. 130, no. 12, pp. 2824–2834, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. P. Meszaros, I. Hummel, K. Klappe, O. Draghiciu, D. Hoekstra, and J. W. Kok, “The function of the ATP-binding cassette (ABC) transporter ABCB1 is not susceptible to actin disruption,” Biochimica et Biophysica Acta, vol. 1828, no. 2, pp. 340–351, 2013. View at Publisher · View at Google Scholar
  31. K. Klappe, I. Hummel, and J. W. Kok, “Separation of actin-dependent and actin-independent lipid rafts,” Analytical Biochemistry, vol. 438, no. 2, pp. 133–135, 2013. View at Publisher · View at Google Scholar
  32. A. Kusumi, C. Nakada, K. Ritchie et al., “Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules,” Annual Review of Biophysics and Biomolecular Structure, vol. 34, pp. 351–378, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. T. Fujiwara, K. Ritchie, H. Murakoshi, K. Jacobson, and A. Kusumi, “Phospholipids undergo hop diffusion in compartmentalized cell membrane,” Journal of Cell Biology, vol. 157, no. 6, pp. 1071–1081, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. S. J. Singer and G. L. Nicolson, “The fluid mosaic model of the structure of cell membranes,” Science, vol. 175, no. 4023, pp. 720–731, 1972. View at Google Scholar · View at Scopus
  35. F. M. Goni, “The basic structure and dynamics of cell membranes: an update of the Singer-Nicholson model,” Biochimica et Biophysica Acta, vol. 1838, no. 6, pp. 1467–1476, 2014. View at Publisher · View at Google Scholar
  36. K. Simons and E. Ikonen, “Functional rafts in cell membranes,” Nature, vol. 387, no. 6633, pp. 569–572, 1997. View at Publisher · View at Google Scholar · View at Scopus
  37. D. M. Owen and K. Gaus, “Imaging lipid domains in cell membranes: the advent of super-resolution fluorescence microscopy,” Frontiers in Plant Science, vol. 4, article 503, 2013. View at Publisher · View at Google Scholar
  38. J. Ehrig, E. P. Petrov, and P. Schwille, “Near-critical fluctuations and cytoskeleton-assisted phase separation lead to subdiffusion in cell membranes,” Biophysical Journal, vol. 100, no. 1, pp. 80–89, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. B. F. Lillemeier, J. R. Pfeiffer, Z. Surviladze, B. S. Wilson, and M. M. Davis, “Plasma membrane-associated proteins are clustered into islands attached to the cytoskeleton,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 50, pp. 18992–18997, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. A. G. Cherstvy and E. P. Petrov, “Modeling DNA condensation on freestanding cationic lipid membranes,” Physical Chemistry Chemical Physics, vol. 16, no. 5, pp. 2020–2037, 2014. View at Publisher · View at Google Scholar
  41. M. Leslie, “Do lipid rafts exist?” Science, vol. 334, no. 6059, pp. 1046–1047, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. E. Klotzsch and G. J. Schutz, “A critical survey of methods to detect plasma membrane rafts,” Philosophical Transactions of the Royal Society B, vol. 368, no. 1611, Article ID 20120033, 2013. View at Publisher · View at Google Scholar
  43. J. Malinsky, M. Opekarova, G. Grossmann, and W. Tanner, “Membrane microdomains, rafts, and detergent-resistant membranes in plants and fungi,” Annual Review of Plant Biology, vol. 64, pp. 501–529, 2013. View at Publisher · View at Google Scholar
  44. A. S. Klymchenko and R. Kreder, “Fluorescent probes for lipid rafts: from model membranes to living cells,” Chemistry & Biology, vol. 21, no. 1, pp. 97–113, 2014. View at Publisher · View at Google Scholar
  45. K. L. Inder, M. Davis, and M. M. Hill, “Ripples in the pond—using a systems approach to decipher the cellular functions of membrane microdomains,” Molecular BioSystems, vol. 9, no. 3, pp. 330–338, 2013. View at Publisher · View at Google Scholar
  46. S. Komura and D. Andelman, “Physical aspects of heterogeneities in multi-component lipid membranes,” Advances in Colloid and Interface Science, 2014. View at Publisher · View at Google Scholar
  47. B. Palmieri, T. Yamamoto, R. C. Brewster, and S. A. Safran, “Line active molecules promote inhomogeneous structures in membranes: theory, simulations and experiments,” Advances in Colloid and Interface Science, 2014. View at Publisher · View at Google Scholar
  48. M. J. Saxton and K. Jacobsen, “Single-particle tracking: applications to membrane dynamics,” Annual Review of Biophysics and Biomolecular Structure, vol. 26, pp. 373–399, 1997. View at Publisher · View at Google Scholar
  49. A. G. Cherstvy, A. V. Chechkin, and R. Metzler, “Particle invasion, survival, and non-ergodicity in 2D diffusion processes with space-dependent diffusivity,” Soft Matter, vol. 10, no. 10, pp. 1591–1601, 2014. View at Publisher · View at Google Scholar
  50. J. F. Frisz, H. A. Klitzing, K. Lou et al., “Sphingolipid domains in the plasma membranes of fibroblasts are not enriched with cholesterol,” The Journal of Biological Chemistry, vol. 288, no. 23, pp. 16855–16861, 2013. View at Publisher · View at Google Scholar
  51. J. F. Frisz, K. Lou, H. A. Klitzing et al., “Direct chemical evidence for sphingolipid domains in the plasma membranes of fibroblasts,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 8, pp. E613–E622, 2013. View at Publisher · View at Google Scholar