Table of Contents
Advances in Biology
Volume 2014 (2014), Article ID 471836, 16 pages
http://dx.doi.org/10.1155/2014/471836
Review Article

Advances in Human Biology: Combining Genetics and Molecular Biophysics to Pave the Way for Personalized Diagnostics and Medicine

Computational Biophysics and Bioinformatics, Department of Physics, Clemson University, Clemson, SC 29634, USA

Received 29 January 2014; Revised 23 April 2014; Accepted 17 June 2014; Published 7 July 2014

Academic Editor: Yinan Wei

Copyright © 2014 Emil Alexov. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. Kastelic and K. Drobnič, “A single-nucleotide polymorphism (SNP) multiplex system: the association of five SNPs with human eye and hair color in the Slovenian population and comparison using a Bayesian network and logistic regression model,” Croatian Medical Journal, vol. 53, no. 5, pp. 401–408, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. T. J. Hoffmann, Y. Zhan, M. N. Kvale et al., “Design and coverage of high throughput genotyping arrays optimized for individuals of East Asian, African American, and Latino race/ethnicity using imputation and a novel hybrid SNP selection algorithm,” Genomics, vol. 98, no. 6, pp. 422–430, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. J. M. de Gruijter, O. Lao, M. Vermeulen et al., “Contrasting signals of positive selection in genes involved in human skin-color variation from tests based on SNP scans and resequencing,” Investigative Genetics, vol. 2, no. 1, article 24, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Anno, T. Abe, and T. Yamamoto, “Interactions between SNP alleles at multiple loci contribute to skin color differences between caucasoid and mongoloid subjects,” International Journal of Biological Sciences, vol. 4, no. 2, pp. 81–86, 2008. View at Google Scholar · View at Scopus
  5. E. Alexov and M. Sternberg, “Understanding molecular effects of naturally occurring genetic differences,” Journal of Molecular Biology, vol. 425, no. 21, pp. 3911–3913, 2013. View at Publisher · View at Google Scholar · View at Scopus
  6. R. R. Haraksingh and M. P. Snyder, “Impacts of variation in the human genome on gene regulation,” Journal of Molecular Biology, vol. 425, no. 21, pp. 3970–3977, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Chen, G. I. Mias, J. Li-Pook-Than et al., “Personal omics profiling reveals dynamic molecular and medical phenotypes,” Cell, vol. 148, no. 6, pp. 1293–1307, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Y. K. Lam, C. Pan, M. J. Clark et al., “Detecting and annotating genetic variations using the HugeSeq pipeline,” Nature Biotechnology, vol. 30, no. 3, pp. 226–229, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. R. R. Haraksingh, A. Abyzov, M. Gerstein, A. E. Urban, and M. Snyder, “Genome-wide mapping of copy number variation in humans: comparative analysis of high resolution array platforms,” PLoS ONE, vol. 6, no. 11, Article ID e27859, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Genomes Project, G. R. Abecasis, A. Auton et al., “An integrated map of genetic variation from 1,092 human genomes,” Nature, vol. 491, pp. 56–65, 2012. View at Google Scholar
  11. Genomes Project Consortium, G. R. Abecasis, D. Altshuler et al., “A map of human genome variation from population-scale sequencing,” Nature, vol. 467, pp. 1061–1073, 2010. View at Publisher · View at Google Scholar
  12. D. F. Conrad, D. Pinto, R. Redon et al., “Origins and functional impact of copy number variation in the human genome,” Nature, vol. 464, no. 7289, pp. 704–712, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Redon, S. Ishikawa, K. R. Fitch et al., “Global variation in copy number in the human genome,” Nature, vol. 444, no. 7118, pp. 444–454, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Gonzaga-Jauregui, J. R. Lupski, and R. A. Gibbs, “Human genome sequencing in health and disease,” Annual Review of Medicine, vol. 63, pp. 35–61, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. C. G. van El, M. C. Cornel, P. Borry et al., “Whole-genome sequencing in health care: recommendations of the European society of human genetics,” European Journal of Human Genetics, vol. 21, supplement 1, pp. S1–S5, 2013. View at Google Scholar
  16. C. E. Schwartz and C.-F. Chen, “Progress in detecting genetic alterations and their association with human disease,” Journal of Molecular Biology, vol. 425, no. 21, pp. 3914–3918, 2013. View at Publisher · View at Google Scholar
  17. O. R. Saramäki, K. K. Waltering, and T. Visakorpi, “Methods for identifying and studying genetic alterations in hormone-dependent cancers.,” Methods in molecular biology, vol. 505, pp. 263–277, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. N. Haiminen, D. N. Kuhn, L. Parida, and I. Rigoutsos, “Evaluation of methods for de novo genome assembly from high-throughput sequencing reads reveals dependencies that affect the quality of the results,” PLoS ONE, vol. 6, no. 9, Article ID e24182, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Scudellari, “The 24-hour, $1,000 genome,” Cancer Discovery, 2012. View at Publisher · View at Google Scholar
  20. L. deFrancesco, “Life technologies promises $1,000 genome,” Nature biotechnology, vol. 30, article 126, 2012. View at Google Scholar · View at Scopus
  21. E. R. Mardis, “The 1,000 genome, the 100,000 analysis?” Genome Medicine, vol. 2, no. 11, article 84, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Wise, “Consortium hopes to sequence genome of 1000 volunteers,” British Medical Journal, vol. 336, no. 7638, article 237, 2008. View at Google Scholar · View at Scopus
  23. B. M. Kuehn, “1000 genomes project promises closer look at variation in human genome,” The Journal of the American Medical Association, vol. 300, no. 23, article 2715, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Pybus, G. M. Dall'olio, P. Luisi et al., “1000 genomes selection browser 1.0: a genome browser dedicated to signatures of natural selection in modern humans,” Nucleic Acids Research, 2013. View at Publisher · View at Google Scholar
  25. J. Amberger, C. A. Bocchini, A. F. Scott, and A. Hamosh, “McKusick's Online Mendelian Inheritance in Man (OMIM),” Nucleic Acids Research, vol. 37, no. 1, pp. D793–D796, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. V. A. McKusick, “Mendelian Inheritance in Man and its online version, OMIM,” The American Journal of Human Genetics, vol. 80, no. 4, pp. 588–604, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. H. J. W. Van Triest, D. Chen, X. Ji, S. Qi, and J. Li-Ling, “PhenOMIM: an OMIM-based secondary database purported for phenotypic comparison,” in Proceedings of the 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS '11), pp. 3589–3592, September 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Rossi, A. Tsirigos, A. Amoroso et al., “OMiR: identification of associations between OMIM diseases and microRNAs,” Genomics, vol. 97, no. 2, pp. 71–76, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Cohen, A. Gefen, M. Elhadad, and O. S. Birk, “CSI-OMIM—clinical synopsis search in OMIM,” BMC Bioinformatics, vol. 12, p. 65, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. C. D. Bajdik, B. Kuo, S. Rusaw, S. Jones, and A. Brooks-Wilson, “CGMIM: automated text-mining of Online Mendelian Inheritance in Man (OMIM) to identify genetically-associated cancers and candidate genes,” BMC Bioinformatics, vol. 6, article 78, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Bhagwat, “Searching NCBI’s dbSNP database,” in Current Protocols in Bioinformatics, chapter 1, unit 1.19, 2010. View at Google Scholar
  32. S. F. Saccone, J. Quan, G. Mehta et al., “New tools and methods for direct programmatic access to the dbSNP relational database,” Nucleic Acids Research, vol. 39, no. 1, pp. D901–D907, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Teng, T. Madej, A. Panchenko, and E. Alexov, “Modeling effects of human single nucleotide polymorphisms on protein-protein interactions,” Biophysical Journal, vol. 96, no. 6, pp. 2178–2188, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. Q. Cao, M. Zhou, X. Wang et al., “CaSNP: a database for interrogating copy number alterations of cancer genome from SNP array data,” Nucleic Acids Research, vol. 39, no. 1, pp. D968–D974, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. G. Tuteja, E. Cheng, H. Papadakis, and G. Bejerano, “PESNPdb: a comprehensive database of SNPs studied in association with pre-eclampsia,” Placenta, vol. 33, no. 12, pp. 1055–1057, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Reumers, J. Schymkowitz, J. Ferkinghoff-Borg, F. Stricher, L. Serrano, and F. Rousseau, “SNPeffect: a database mapping molecular phenotypic effects of human non-synonymous coding SNPs,” Nucleic Acids Research, vol. 33, pp. D527–D532, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. X. Liu, X. Jian, and E. Boerwinkle, “dbNSFP: a lightweight database of human nonsynonymous SNPs and their functional predictions,” Human Mutation, vol. 32, no. 8, pp. 894–899, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. L. Guo, Y. Du, S. Chang, K. Zhang, and J. Wang, “rSNPBase: a database for curated regulatory SNPs,” Nucleic Acids Research, vol. 42, pp. D1033–D1039, 2014. View at Google Scholar
  39. T. Zhang, Q. Zhou, Y. Pang et al., “CYP-nsSNP: a specialized database focused on effect of non-synonymous SNPs on function of CYPs,” Interdisciplinary Sciences: Computational Life Sciences, vol. 4, no. 2, pp. 83–89, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Bhushan and N. B. Perumal, “Disease associated cytokine SNPs database: an annotation and dissemination model,” Cytokine, vol. 57, no. 1, pp. 107–112, 2012. View at Publisher · View at Google Scholar · View at Scopus
  41. International HapMap Consortium, “The International HapMap Project,” Nature, vol. 426, no. 6968, pp. 789–796, 2003. View at Publisher · View at Google Scholar
  42. T. R. Magalhães, J. P. Casey, J. Conroy et al., “HGDP and HapMap analysis by Ancestry Mapper reveals local and global population relationships,” PLoS ONE, vol. 7, no. 11, Article ID e49438, 2012. View at Publisher · View at Google Scholar · View at Scopus
  43. Y. J. Sung, C. C. Gu, H. K. Tiwari, D. K. Arnett, U. Broeckel, and D. C. Rao, “Genotype imputation for African Americans using data from HapMap phase II versus 1000 genomes projects,” Genetic Epidemiology, vol. 36, no. 5, pp. 508–516, 2012. View at Publisher · View at Google Scholar · View at Scopus
  44. X. Gao, T. Haritunians, P. Marjoram et al., “Genotype imputation for Latinos using the HapMap and 1000 Genomes Project reference panels,” Frontiers in Genetics, vol. 3, article 117, 2012. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Garte, “Human population genetic diversity as a function of SNP type from HapMap data,” American Journal of Human Biology, vol. 22, no. 3, pp. 297–300, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. C.-T. Liu, H. Lin, and H. Lin, “Functional analysis of HapMap SNPs,” Gene, vol. 511, no. 2, pp. 358–363, 2012. View at Publisher · View at Google Scholar · View at Scopus
  47. A. K. Mitra, K. R. Crews, S. Pounds et al., “Genetic variants in cytosolic 5′-nucleotidase II are associated with its expression and cytarabine sensitivity in HapMap cell lines and in patients with acute myeloid leukemia,” Journal of Pharmacology and Experimental Therapeutics, vol. 339, no. 1, pp. 9–23, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. X. Cao, A. K. Mitra, S. Pounds et al., “RRM1 and RRM2 pharmacogenetics: association with phenotypes in HapMap cell lines and acute myeloid leukemia patients,” Pharmacogenomics, vol. 14, no. 12, pp. 1449–1466, 2013. View at Publisher · View at Google Scholar
  49. T. Yamamura, J. Hikita, M. Bleakley et al., “HapMap SNP Scanner: an online program to mine SNPs responsible for cell phenotype,” Tissue Antigens, vol. 80, no. 2, pp. 119–125, 2012. View at Publisher · View at Google Scholar · View at Scopus
  50. S. Stefl, H. Nishi, M. Petukh, A. R. Panchenko, and E. Alexov, “Molecular mechanisms of disease-causing missense mutations,” Journal of Molecular Biology, vol. 425, pp. 3919–3936, 2013. View at Publisher · View at Google Scholar · View at Scopus
  51. Z. Zhang, M. A. Miteva, L. Wang, and E. Alexov, “Analyzing effects of naturally occurring missense mutations,” Computational and Mathematical Methods in Medicine, vol. 2012, Article ID 805827, 2012. View at Publisher · View at Google Scholar · View at Scopus
  52. S. Teng, E. Michonova-Alexova, and E. Alexov, “Approaches and resources for prediction of the effects of non-synonymous single nucleotide polymorphism on protein function and interactions,” Current Pharmaceutical Biotechnology, vol. 9, no. 2, pp. 123–133, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. B. V. Halldorsson and R. Sharan, “Network-based interpretation of genomic variation data,” The Journal of Molecular Biology, vol. 425, pp. 3964–3969, 2013. View at Google Scholar
  54. A. Califano, A. J. Butte, S. Friend, T. Ideker, and E. Schadt, “Leveraging models of cell regulation and GWAS data in integrative network-based association studies,” Nature Genetics, vol. 44, no. 8, pp. 841–847, 2012. View at Publisher · View at Google Scholar · View at Scopus
  55. M. E. Smoot, K. Ono, J. Ruscheinski, P. Wang, and T. Ideker, “Cytoscape 2.8: new features for data integration and network visualization,” Bioinformatics, vol. 27, no. 3, Article ID btq675, pp. 431–432, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. R. Saito, M. E. Smoot, K. Ono et al., “A travel guide to Cytoscape plugins,” Nature Methods, vol. 9, no. 11, pp. 1069–1076, 2012. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Smoot, K. Ono, T. Ideker, and S. Maere, “PiNGO: a cytoscape plugin to find candidate genes in biological networks,” Bioinformatics, vol. 27, no. 7, pp. 1030–1031, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. M. S. Cline, M. Smoot, E. Cerami et al., “Integration of biological networks and gene expression data using Cytoscape.,” Nature Protocols, vol. 2, no. 10, pp. 2366–2382, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. C. M. Tan, E. Y. Chen, R. Dannenfelser, N. R. Clark, and A. Ma'Ayan, “Network2Canvas: network visualization on a canvas with enrichment analysis,” Bioinformatics, vol. 29, no. 15, pp. 1872–1878, 2013. View at Publisher · View at Google Scholar · View at Scopus
  60. S. Turkarslan, E. J. Wurtmann, W. J. Wu et al., “Network portal: a database for storage, analysis and visualization of biological networks,” Nucleic Acids Research, vol. 42, pp. D184–D190, 2014. View at Publisher · View at Google Scholar
  61. W. Li, L. N. Kinch, and N. V. Grishin, “Pclust: protein network visualization highlighting experimental data,” Bioinformatics, vol. 29, no. 20, pp. 2647–2648, 2013. View at Publisher · View at Google Scholar
  62. D. Hurley, H. Araki, Y. Tamada et al., “Gene network inference and visualization tools for biologists: application to new human transcriptome datasets,” Nucleic Acids Research, vol. 40, no. 6, pp. 2377–2398, 2012. View at Publisher · View at Google Scholar · View at Scopus
  63. P. Fariselli, O. Olmea, A. Valencia, and R. Casadio, “Progress in predicting inter-residue contacts of proteins with neural networks and correlated mutations,” Proteins: Structure, Function and Genetics, vol. 45, no. 5, pp. 157–162, 2001. View at Publisher · View at Google Scholar · View at Scopus
  64. F. Pazos, M. Helmer-Citterich, G. Ausiello, and A. Valencia, “Correlated mutations contain information about protein-protein interaction,” Journal of Molecular Biology, vol. 271, no. 4, pp. 511–523, 1997. View at Publisher · View at Google Scholar · View at Scopus
  65. H. Nishi, M. Tyagi, S. Teng et al., “Cancer missense mutations alter binding properties of proteins and their interaction networks,” PLoS ONE, vol. 8, no. 6, Article ID e66273, 2013. View at Publisher · View at Google Scholar · View at Scopus
  66. K. Takano, D. Liu, P. Tarpey et al., “An x-linked channelopathy with cardiomegaly due to a CLIC2 mutation enhancing ryanodine receptor channel activity,” Human Molecular Genetics, vol. 21, no. 20, pp. 4497–4507, 2012. View at Publisher · View at Google Scholar · View at Scopus
  67. T. K. B. Gandhi, J. Zhong, S. Mathivanan et al., “Analysis of the human protein interactome and comparison with yeast, worm and fly interaction datasets,” Nature Genetics, vol. 38, no. 3, pp. 285–293, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. A. Ghavidel, G. Cagney, and A. Emili, “A skeleton of the human protein interactome,” Cell, vol. 122, no. 6, pp. 830–832, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. K. Rajapakse, D. Drobne, D. Kastelec, and R. Marinsek-Logar, “Experimental evidence of false-positive Comet test results due to TiO2 particle—assay interactions,” Nanotoxicology, vol. 7, no. 5, pp. 1043–1051, 2013. View at Publisher · View at Google Scholar · View at Scopus
  70. T. N. Nguyen and J. A. Goodrich, “Protein-protein interaction assays: eliminating false positive interactions,” Nature Methods, vol. 3, no. 2, pp. 135–139, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. S. Foerster, T. Kacprowski, V. M. Dhople et al., “Characterization of the EGFR interactome reveals associated protein complex networks and intracellular receptor dynamics,” Proteomics, vol. 13, pp. 3131–3144, 2013. View at Google Scholar
  72. H. Bohnenberger, T. Oellerich, M. Engelke, H. H. Hsiao, H. Urlaub, and J. Wienands, “Complex phosphorylation dynamics control the composition of the Syk interactome in B cells,” European Journal of Immunology, vol. 41, no. 6, pp. 1550–1562, 2011. View at Publisher · View at Google Scholar · View at Scopus
  73. E. Guney and B. Oliva, “Analysis of the robustness of network-based disease-gene prioritization methods reveals redundancy in the human interactome and functional diversity of disease-genes,” PLoS ONE, vol. 9, no. 4, Article ID e94686, 2014. View at Publisher · View at Google Scholar
  74. J. Love, F. Mancia, L. Shapiro et al., “The New York Consortium on Membrane Protein Structure (NYCOMPS): a high-throughput platform for structural genomics of integral membrane proteins,” Journal of Structural and Functional Genomics, vol. 11, no. 3, pp. 191–199, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. R. Xiao, S. Anderson, J. Aramini et al., “The high-throughput protein sample production platform of the Northeast Structural Genomics Consortium,” Journal of Structural Biology, vol. 172, no. 1, pp. 21–33, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. Z. Wunderlich, T. B. Acton, J. Liu et al., “The protein target list of the northeast structural genomics consortium,” Proteins, vol. 56, no. 2, pp. 181–187, 2004. View at Google Scholar
  77. A. R. Williamson, “Creating a structural genomics consortium,” Nature Structural Biology, vol. 7, p. 953, 2000. View at Publisher · View at Google Scholar · View at Scopus
  78. E. Portugaly, I. Kifer, and M. Linial, “Selecting targets for structural determination by navigating in a graph of protein families,” Bioinformatics, vol. 18, no. 7, pp. 899–907, 2002. View at Publisher · View at Google Scholar · View at Scopus
  79. P. W. Rose, C. Bi, W. F. Bluhm et al., “The RCSB protein data bank: new resources for research and education,” Nucleic Acids Research, vol. 41, no. 1, pp. D475–D482, 2013. View at Publisher · View at Google Scholar · View at Scopus
  80. H. M. Berman, G. J. Kleywegt, H. Nakamura, and J. L. Markley, “Mini review: the future of the protein data bank,” Biopolymers, vol. 99, no. 3, pp. 218–222, 2013. View at Publisher · View at Google Scholar · View at Scopus
  81. Y. Zhang, “I-TASSER server for protein 3D structure prediction,” BMC Bioinformatics, vol. 9, article 40, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. D. M. Dunlavy, D. P. O'Leary, D. Klimov, and D. Thirumalai, “HOPE: a homotopy optimization method for protein structure prediction,” Journal of Computational Biology, vol. 12, no. 10, pp. 1275–1288, 2005. View at Publisher · View at Google Scholar · View at Scopus
  83. D. Kihara, H. Lu, A. Kolinski, and J. Skolnick, “TOUCHSTONE: an ab initio protein structure prediction method that uses threading-based tertiary restraints,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 18, pp. 10125–10130, 2001. View at Publisher · View at Google Scholar · View at Scopus
  84. S. D. Pickett, M. A. Saqi, and M. J. Sternberg, “Evaluation of the sequence template method for protein structure prediction: discrimination of the (beta/alpha)8-barrel fold,” Journal of Molecular Biology, vol. 228, no. 1, pp. 170–187, 1992. View at Publisher · View at Google Scholar · View at Scopus
  85. W. Qu, H. Sui, B. Yang, and W. Qian, “Improving protein secondary structure prediction using a multi-modal BP method,” Computers in Biology and Medicine, vol. 41, no. 10, pp. 946–959, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. Q. Cong, L. N. Kinch, J. Pei et al., “An automatic method for CASP9 free modeling structure prediction assessment,” Bioinformatics, vol. 27, no. 24, pp. 3371–3378, 2011. View at Publisher · View at Google Scholar · View at Scopus
  87. D. Petrey, Z. Xiang, C. L. Tang et al., “Using multiple structure alignments, fast model building, and energetic analysis in fold recognition and homology modeling,” Proteins: Structure, Function and Genetics, vol. 53, supplement 6, pp. 430–435, 2003. View at Publisher · View at Google Scholar · View at Scopus
  88. A. Kryshtafovych, K. Fidelis, and J. Moult, “CASP9 results compared to those of previous casp experiments,” Proteins: Structure, Function and Bioinformatics, vol. 82, supplement 2, pp. 164–174, 2014. View at Publisher · View at Google Scholar · View at Scopus
  89. B. Stieglitz, L. F. Haire, I. Dikic, and K. Rittinger, “Structural analysis of SHARPIN, a subunit of a large multi-protein E3 ubiquitin ligase, reveals a novel dimerization function for the pleckstrin homology superfold,” Journal of Biological Chemistry, vol. 287, no. 25, pp. 20823–20829, 2012. View at Publisher · View at Google Scholar · View at Scopus
  90. A. Silkov, Y. Yoon, H. Lee et al., “Genome-wide structural analysis reveals novel membrane binding properties of AP180 N-terminal homology (ANTH) domains,” The Journal of Biological Chemistry, vol. 286, no. 39, pp. 34155–34163, 2011. View at Publisher · View at Google Scholar · View at Scopus
  91. P. Kundrotas, P. Georgieva, A. Shoshieva, P. Christova, and E. Alexova, “Assessing the quality of the homology-modeled 3D structures from electrostatic standpoint: test on bacterial nucleoside monophosphate kinase families,” Journal of Bioinformatics and Computational Biology, vol. 5, no. 3, pp. 693–715, 2007. View at Publisher · View at Google Scholar · View at Scopus
  92. Z. Zhang, S. Witham, M. Petukh et al., “A rational free energy-based approach to understanding and targeting disease-causing missense mutations,” Journal of the American Medical Informatics Association, vol. 20, no. 4, pp. 643–651, 2013. View at Publisher · View at Google Scholar · View at Scopus
  93. L. F. Agnati, A. O. Tarakanov, S. Ferré, K. Fuxe, and D. Guidolin, “Receptor-receptor interactions, receptor mosaics, and basic principles of molecular network organization: possible implications for drug development,” Journal of Molecular Neuroscience, vol. 26, no. 2-3, pp. 193–208, 2005. View at Publisher · View at Google Scholar · View at Scopus
  94. J. R. Perkins, I. Diboun, B. H. Dessailly, J. G. Lees, and C. Orengo, “Transient protein-protein interactions: structural, functional, and network properties,” Structure, vol. 18, no. 10, pp. 1233–1243, 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. X. Kuang, J. G. Han, N. Zhao, B. Pang, C. Shyu, and D. Korkin, “DOMMINO: a database of macromolecular interactions,” Nucleic Acids Research, vol. 40, no. 1, pp. D501–D506, 2012. View at Publisher · View at Google Scholar · View at Scopus
  96. A. A. Das, O. P. Sharma, M. S. Kumar, R. Krishna, and P. P. Mathur, “PepBind: a comprehensive database and computational tool for analysis of protein-peptide interactions,” Genomics, Proteomics & Bioinformatics, vol. 11, no. 4, pp. 241–246, 2013. View at Publisher · View at Google Scholar · View at Scopus
  97. R. Rid, W. Strasser, D. Siegl et al., “PRIMOS: an integrated database of reassessed protein-protein interactions providing web-based access to in silico validation of experimentally derived data,” Assay and Drug Development Technologies, vol. 11, no. 5, pp. 333–346, 2013. View at Publisher · View at Google Scholar · View at Scopus
  98. S. Kikugawa, K. Nishikata, K. Murakami et al., “PCDq: human protein complex database with quality index which summarizes different levels of evidences of protein complexes predicted from h-invitational protein-protein interactions integrative dataset.,” BMC Systems Biology, vol. 6, supplement 2, p. S7, 2012. View at Google Scholar · View at Scopus
  99. I. H. Moal and J. Fernández-Recio, “SKEMPI: a structural kinetic and energetic database of mutant protein interactions and its use in empirical models,” Bioinformatics, vol. 28, no. 20, pp. 2600–2607, 2012. View at Publisher · View at Google Scholar · View at Scopus
  100. M. N. Wass, A. David, and M. J. Sternberg, “Challenges for the prediction of macromolecular interactions,” Current Opinion in Structural Biology, vol. 21, no. 3, pp. 382–390, 2011. View at Publisher · View at Google Scholar · View at Scopus
  101. D. Baker, “Prediction and design of macromolecular structures and interactions,” Philosophical Transactions of the Royal Society B, vol. 361, pp. 459–463, 2006. View at Publisher · View at Google Scholar
  102. V. A. Roberts, M. E. Pique, L. F. Ten Eyck, and S. Li, “Predicting protein-DNA interactions by full search computational docking,” Proteins, vol. 81, pp. 2106–2118, 2013. View at Google Scholar
  103. T. Clancy, E. A. Rødland, S. Nygard, and E. Hovig, “Predicting physical interactions between protein complexes,” Molecular and Cellular Proteomics, vol. 12, no. 6, pp. 1723–1734, 2013. View at Publisher · View at Google Scholar · View at Scopus
  104. N. Fukuhara and T. Kawabata, “HOMCOS: a server to predict interacting protein pairs and interacting sites by homology modeling of complex structures,” Nucleic Acids Research, vol. 36, pp. W185–W189, 2008. View at Publisher · View at Google Scholar · View at Scopus
  105. M. Takeda-Shitaka, G. Terashi, C. Chiba, D. Takaya, and H. Umeyama, “FAMS Complex: a fully automated homology modeling protein complex structures,” Medicinal Chemistry, vol. 2, no. 2, pp. 191–201, 2006. View at Publisher · View at Google Scholar · View at Scopus
  106. P. J. Kundrotas, M. F. Lensink, and E. Alexov, “Homology-based modeling of 3D structures of protein-protein complexes using alignments of modified sequence profiles,” International Journal of Biological Macromolecules, vol. 43, no. 2, pp. 198–208, 2008. View at Publisher · View at Google Scholar · View at Scopus
  107. P. Kundrotas and E. Alexov, “Predicting interacting and interfacial residues using continuous sequence segments,” International Journal of Biological Macromolecules, vol. 41, no. 5, pp. 615–623, 2007. View at Publisher · View at Google Scholar · View at Scopus
  108. G. Launay and T. Simonson, “Homology modelling of protein-protein complexes: a simple method and its possibilities and limitations,” BMC Bioinformatics, vol. 9, article 427, 2008. View at Publisher · View at Google Scholar · View at Scopus
  109. M. van Dijk and A. M. J. J. Bonvin, “Pushing the limits of what is achievable in protein—DNA docking: benchmarking HADDOCK’s performance,” Nucleic Acids Research, vol. 38, no. 17, Article ID gkq222, pp. 5634–5647, 2010. View at Publisher · View at Google Scholar · View at Scopus
  110. P. Carter, V. I. Lesk, S. A. Islam, and M. J. E. Sternberg, “Protein-protein docking using 3D-Dock in rounds 3, 4, and 5 of CAPRI,” Proteins: Structure, Function and Genetics, vol. 60, no. 2, pp. 281–288, 2005. View at Publisher · View at Google Scholar · View at Scopus
  111. D. Kozakov, R. Brenke, S. R. Comeau, and S. Vajda, “PIPER: an FFT-based protein docking program with pairwise potentials,” Proteins: Structure, Function and Genetics, vol. 65, no. 2, pp. 392–406, 2006. View at Publisher · View at Google Scholar · View at Scopus
  112. S. Liang, G. Wang, and Y. Zhou, “Refining near-native protein-protein docking decoys by local resampling and energy minimization,” Proteins, vol. 76, no. 2, pp. 309–316, 2009. View at Publisher · View at Google Scholar · View at Scopus
  113. M. F. Lensink and S. J. Wodak, “Docking, scoring, and affinity prediction in CAPRI,” Proteins, vol. 81, pp. 2082–2095, 2013. View at Google Scholar
  114. M. F. Lensink, I. H. Moal, P. A. Bates et al., “Blind prediction of interfacial water positions in CAPRI,” Proteins, vol. 82, no. 4, pp. 620–632, 2014. View at Publisher · View at Google Scholar
  115. M. F. Lensink and S. J. Wodak, “Blind predictions of protein interfaces by docking calculations in CAPRI,” Proteins: Structure, Function and Bioinformatics, vol. 78, no. 15, pp. 3085–3095, 2010. View at Publisher · View at Google Scholar · View at Scopus
  116. M. F. Lensink and S. J. Wodak, “Docking and scoring protein interactions: CAPRI 2009,” Proteins: Structure, Function and Bioinformatics, vol. 78, no. 15, pp. 3073–3084, 2010. View at Publisher · View at Google Scholar · View at Scopus
  117. D. Beglov, D. R. Hall, R. Brenke et al., “Minimal ensembles of side chain conformers for modeling protein-protein interactions,” Proteins: Structure, Function and Bioinformatics, vol. 80, no. 2, pp. 591–601, 2012. View at Publisher · View at Google Scholar · View at Scopus
  118. Q. Wang, A. A. Canutescu, and R. L. Dunbrack Jr., “SCWRL and MolIDE: computer programs for side-chain conformation prediction and homology modeling,” Nature Protocols, vol. 3, no. 12, pp. 1832–1847, 2008. View at Publisher · View at Google Scholar · View at Scopus
  119. M. J. Bower, F. E. Cohen, and R. L. Dunbrack Jr., “Prediction of protein side-chain rotamers from a backbone-dependent rotamer library: a new homology modeling tool,” Journal of Molecular Biology, vol. 267, no. 5, pp. 1268–1282, 1997. View at Publisher · View at Google Scholar · View at Scopus
  120. Z. Xiang, P. J. Steinbach, M. P. Jacobson, R. A. Friesner, and B. Honig, “Prediction of side-chain conformations on protein surfaces,” Proteins: Structure, Function and Genetics, vol. 66, no. 4, pp. 814–823, 2007. View at Publisher · View at Google Scholar · View at Scopus
  121. Z. Xiang and B. Honig, “Extending the accuracy limits of prediction for side-chain conformations,” Journal of Molecular Biology, vol. 311, no. 2, pp. 421–430, 2001. View at Publisher · View at Google Scholar · View at Scopus
  122. S. Liang, C. Zhang, and Y. Zhou, “LEAP: highly accurate prediction of protein loop conformations by integrating coarse-grained sampling and optimized energy scores with all-atom refinement of backbone and side chains,” Journal of Computational Chemistry, vol. 35, no. 4, pp. 335–341, 2014. View at Publisher · View at Google Scholar
  123. K. Zhu and T. Day, “Ab initio structure prediction of the antibody hypervariable H3 loop,” Proteins: Structure, Function and Bioinformatics, vol. 81, no. 6, pp. 1081–1089, 2013. View at Publisher · View at Google Scholar · View at Scopus
  124. S. Zhao, K. Zhu, J. Li, and R. A. Friesner, “Progress in super long loop prediction,” Proteins: Structure, Function and Bioinformatics, vol. 79, no. 10, pp. 2920–2935, 2011. View at Publisher · View at Google Scholar · View at Scopus
  125. N. M. Glykos and M. Kokkinidis, “Meaningful refinement of polyalanine models using rigid-body simulated annealing: application to the structure determination of the A31P Rop mutant,” Acta Crystallographica Section D: Biological Crystallography, vol. 55, no. 7, pp. 1301–1308, 1999. View at Publisher · View at Google Scholar · View at Scopus
  126. Z. Zhang, S. Teng, L. Wang, C. E. Schwartz, and E. Alexov, “Computational analysis of missense mutations causing Snyder-Robinson syndrome,” Human Mutation, vol. 31, no. 9, pp. 1043–1049, 2010. View at Publisher · View at Google Scholar · View at Scopus
  127. N. Dolzhanskaya, M. A. Gonzalez, F. Sperziani et al., “A novel p.Leu(381)Phe mutation in presenilin 1 is associated with very early onset and unusually fast progressing dementia as well as lysosomal inclusions typically seen in Kufs disease,” Journal of Alzheimer's Disease, vol. 39, no. 1, pp. 23–27, 2013. View at Publisher · View at Google Scholar
  128. L. Boccuto, K. Aoki, H. Flanagan-Steet et al., “A mutation in a ganglioside biosynthetic enzyme, ST3GAL5, results in salt & pepper syndrome, a neurocutaneous disorder with altered glycolipid and glycoprotein glycosylation,” Human Molecular Genetics, vol. 23, no. 2, pp. 418–433, 2014. View at Publisher · View at Google Scholar
  129. C. M. Yates and M. J. E. Sternberg, “The effects of non-synonymous single nucleotide polymorphisms (nsSNPs) on protein-protein interactions,” Journal of Molecular Biology, vol. 425, pp. 3949–3963, 2013. View at Publisher · View at Google Scholar · View at Scopus
  130. M. Hecht, Y. Bromberg, and B. Rost, “News from the protein mutability landscape,” Journal of Molecular Biology, vol. 425, no. 21, pp. 3937–3948, 2013. View at Publisher · View at Google Scholar · View at Scopus
  131. Z. Zhang, J. Norris, C. Schwartz, and E. Alexov, “In silico and in vitro investigations of the mutability of disease-causing missense mutation sites in spermine synthase,” PLoS ONE, vol. 6, no. 5, Article ID e20373, 2011. View at Publisher · View at Google Scholar · View at Scopus
  132. L. Wickstrom, E. Gallicchio, and R. M. Levy, “The linear interaction energy method for the prediction of protein stability changes upon mutation,” Proteins: Structure, Function and Bioinformatics, vol. 80, no. 1, pp. 111–125, 2012. View at Publisher · View at Google Scholar · View at Scopus
  133. Y. Li and J. Fang, “PROTS-RF: a robust model for predicting mutation-induced protein stability changes,” PLoS ONE, vol. 7, no. 10, Article ID e47247, 2012. View at Publisher · View at Google Scholar · View at Scopus
  134. E. H. Kellogg, A. Leaver-Fay, and D. Baker, “Role of conformational sampling in computing mutation-induced changes in protein structure and stability,” Proteins: Structure, Function and Bioinformatics, vol. 79, no. 3, pp. 830–838, 2011. View at Publisher · View at Google Scholar · View at Scopus
  135. Y. Dehouck, J. M. Kwasigroch, D. Gilis, and M. Rooman, “PoPMuSiC 2.1: a web server for the estimation of protein stability changes upon mutation and sequence optimality,” BMC Bioinformatics, vol. 12, article 151, 2011. View at Publisher · View at Google Scholar · View at Scopus
  136. C. M. Frenz, “Neural network-based prediction of mutation-induced protein stability changes in staphylococcal nuclease at 20 residue positions,” Proteins: Structure, Function and Genetics, vol. 59, no. 2, pp. 147–151, 2005. View at Publisher · View at Google Scholar · View at Scopus
  137. E. Capriotti, P. Fariselli, and R. Casadio, “I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure,” Nucleic Acids Research, vol. 33, no. 2, pp. W306–W310, 2005. View at Publisher · View at Google Scholar · View at Scopus
  138. G. Thiltgen and R. A. Goldstein, “Assessing predictors of changes in protein stability upon mutation using self-consistency,” PLoS ONE, vol. 7, no. 10, Article ID e46084, 2012. View at Publisher · View at Google Scholar · View at Scopus
  139. S. Khan and M. Vihinen, “Performance of protein stability predictors,” Human Mutation, vol. 31, no. 6, pp. 675–684, 2010. View at Publisher · View at Google Scholar · View at Scopus
  140. K. Schurmann, M. Anton, I. Ivanov, C. Richter, H. Kuhn, and M. Walther, “Molecular basis for the reduced catalytic activity of the naturally occurring T560m mutant of human 12/15-lipoxygenase that has been implicated in coronary artery disease,” Journal of Biological Chemistry, vol. 286, no. 27, pp. 23920–23927, 2011. View at Publisher · View at Google Scholar · View at Scopus
  141. S. Wang, W. Zhao, H. Liu, H. Gong, and Y. Yan, “Increasing βB1-crystallin sensitivity to proteolysis caused by the congenital cataract-microcornea syndrome mutation S129R,” Biochimica et Biophysica Acta, vol. 1832, no. 2, pp. 302–311, 2013. View at Publisher · View at Google Scholar · View at Scopus
  142. S. Witham, K. Takano, C. Schwartz, and E. Alexov, “A missense mutation in CLIC2 associated with intellectual disability is predicted by in silico modeling to affect protein stability and dynamics,” Proteins: Structure, Function and Bioinformatics, vol. 79, no. 8, pp. 2444–2454, 2011. View at Publisher · View at Google Scholar · View at Scopus
  143. H. Tsukamoto and D. L. Farrens, “A constitutively activating mutation alters the dynamics and energetics of a key conformational change in a ligand-free G protein-coupled receptor,” The Journal of Biological Chemistry, vol. 288, pp. 28207–28216, 2013. View at Google Scholar
  144. J. Y. Lee and D. S. Kim, “Dramatic effect of single-base mutation on the conformational dynamics of human telomeric G-quadruplex,” Nucleic Acids Research, vol. 37, no. 11, pp. 3625–3634, 2009. View at Publisher · View at Google Scholar · View at Scopus
  145. R. Guerois, J. E. Nielsen, and L. Serrano, “Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations,” Journal of Molecular Biology, vol. 320, no. 2, pp. 369–387, 2002. View at Publisher · View at Google Scholar · View at Scopus
  146. Y. Dehouck, J. M. Kwasigroch, M. Rooman, and D. Gilis, “BeAtMuSiC: prediction of changes in protein-protein binding affinity on mutations,” Nucleic Acids Research, vol. 41, pp. W333–W339, 2013. View at Google Scholar
  147. A. Benedix, C. M. Becker, B. L. de Groot, A. Caflisch, and R. A. Böckmann, “Predicting free energy changes using structural ensembles,” Nature Methods, vol. 6, no. 1, pp. 3–4, 2009. View at Publisher · View at Google Scholar · View at Scopus
  148. T. Kortemme and D. Baker, “A simple physical model for binding energy hot spots in protein-protein complexes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 22, pp. 14116–14121, 2002. View at Publisher · View at Google Scholar · View at Scopus
  149. G. Rastelli, A. Del Rio, G. Degliesposti, and M. Sgobba, “Fast and accurate predictions of binding free energies using MM-PBSA and MM-GBSA,” Journal of Computational Chemistry, vol. 31, no. 4, pp. 797–810, 2010. View at Publisher · View at Google Scholar · View at Scopus
  150. V. Z. Spassov and L. Yan, “pH-selective mutagenesis of protein-protein interfaces: in silico design of therapeutic antibodies with prolonged half-life,” Proteins: Structure, Function and Bioinformatics, vol. 81, no. 4, pp. 704–714, 2013. View at Publisher · View at Google Scholar · View at Scopus
  151. R. Moretti, S. J. Fleishman, R. Agius, M. Torchala, and P. A. Bates, “Community-wide evaluation of methods for predicting the effect of mutations on protein-protein interactions,” Proteins, vol. 81, pp. 1980–1987, 2013. View at Publisher · View at Google Scholar
  152. A. David, R. Razali, M. N. Wass, and M. J. E. Sternberg, “Protein-protein interaction sites are hot spots for disease-associated nonsynonymous SNPs,” Human Mutation, vol. 33, no. 2, pp. 359–363, 2012. View at Publisher · View at Google Scholar · View at Scopus
  153. Y. Zhang, M. Motamed, J. Seemann, M. S. Brown, and J. L. Goldstein, “Point mutation in luminal Loop 7 of scap protein blocks interaction with Loop 1 and abolishes movement to Golgi,” The Journal of Biological Chemistry, vol. 288, no. 20, pp. 14059–14067, 2013. View at Publisher · View at Google Scholar · View at Scopus
  154. B. A. Shoemaker, D. Zhang, M. Tyagi et al., “IBIS (Inferred Biomolecular Interaction Server) reports, predicts and integrates multiple types of conserved interactions for proteins,” Nucleic Acids Research, vol. 40, no. 1, pp. D834–D840, 2012. View at Publisher · View at Google Scholar · View at Scopus
  155. E. W. Sayers, T. Barrett, D. A. Benson et al., “Database resources of the National Center for Biotechnology Information,” Nucleic Acids Research, vol. 40, no. 1, pp. D13–D25, 2012. View at Publisher · View at Google Scholar · View at Scopus
  156. K. Talley and E. Alexov, “On the pH-optimum of activity and stability of proteins,” Proteins: Structure, Function and Bioinformatics, vol. 78, no. 12, pp. 2699–2706, 2010. View at Publisher · View at Google Scholar · View at Scopus
  157. E. Alexov, “Numerical calculations of the pH of maximal protein stability: the effect of the sequence composition and three-dimensional structure,” European Journal of Biochemistry, vol. 271, no. 1, pp. 173–185, 2004. View at Publisher · View at Google Scholar · View at Scopus
  158. P. Chan and J. Warwicker, “Evidence for the adaptation of protein pH-dependence to subcellular pH,” BMC Biology, vol. 7, article 69, 2009. View at Publisher · View at Google Scholar · View at Scopus
  159. P. Chan, J. Lovrić, and J. Warwicker, “Subcellular pH and predicted pH-dependent features of proteins,” Proteomics, vol. 6, no. 12, pp. 3494–3501, 2006. View at Publisher · View at Google Scholar · View at Scopus
  160. A. V. Onufriev and E. Alexov, “Protonation and pK changes in protein-ligand binding,” Quarterly Reviews of Biophysics, vol. 46, no. 2, pp. 181–209, 2013. View at Publisher · View at Google Scholar · View at Scopus
  161. M. Kimura, J. Machida, S. Yamaguchi, A. Shibata, and T. Tatematsu, “Novel nonsense mutation in MSX1 in familial nonsyndromic oligodontia: subcellular localization and role of homeodomain/MH4,” European Journal of Oral Sciences, vol. 122, no. 1, pp. 15–20, 2014. View at Google Scholar
  162. Y. Erzurumlu, F. Aydin Kose, O. Gozen, D. Gozuacik, E. A. Toth, and P. Ballar, “A unique IBMPFD-related P97/VCP mutation with differential binding pattern and subcellular localization,” International Journal of Biochemistry and Cell Biology, vol. 45, no. 4, pp. 773–782, 2013. View at Publisher · View at Google Scholar · View at Scopus
  163. Y. Hosaka, H. Hanawa, T. Washizuka et al., “Function, subcellular localization and assembly of a novel mutation of KCNJ2 in Andersen's syndrome,” Journal of Molecular and Cellular Cardiology, vol. 35, no. 4, pp. 409–415, 2003. View at Publisher · View at Google Scholar · View at Scopus
  164. P. J. Kundrotas and E. Alexov, “Electrostatic properties of protein-protein complexes,” Biophysical Journal, vol. 91, no. 5, pp. 1724–1736, 2006. View at Publisher · View at Google Scholar · View at Scopus
  165. R. C. Mitra, Z. Zhang, and E. Alexov, “In silico modeling of pH-optimum of protein-protein binding,” Proteins: Structure, Function and Bioinformatics, vol. 79, no. 3, pp. 925–936, 2011. View at Publisher · View at Google Scholar · View at Scopus
  166. M. Petukh, S. Stefl, and E. Alexov, “The role of protonation states in ligand-receptor recognition and binding,” Current Pharmaceutical Design, vol. 19, no. 23, pp. 4182–4190, 2013. View at Publisher · View at Google Scholar · View at Scopus
  167. B. Aguilar, R. Anandakrishnan, J. Z. Ruscio, and A. V. Onufriev, “Statistics and physical origins of pK and ionization state changes upon protein-ligand binding,” Biophysical Journal, vol. 98, no. 5, pp. 872–880, 2010. View at Publisher · View at Google Scholar · View at Scopus
  168. E. Alexov, E. L. Mehler, N. Baker et al., “Progress in the prediction of pKa values in proteins,” Proteins: Structure, Function and Bioinformatics, vol. 79, no. 12, pp. 3260–3275, 2011. View at Publisher · View at Google Scholar · View at Scopus
  169. T. Carstensen, D. Farrell, Y. Huang, N. A. Baker, and J. E. Nielsen, “On the development of protein pKa calculation algorithms,” Proteins: Structure, Function and Bioinformatics, vol. 79, no. 12, pp. 3287–3298, 2011. View at Publisher · View at Google Scholar · View at Scopus
  170. O. Emanuelsson, S. Brunak, G. von Heijne, and H. Nielsen, “Locating proteins in the cell using TargetP, SignalP and related tools,” Nature Protocols, vol. 2, no. 4, pp. 953–971, 2007. View at Publisher · View at Google Scholar · View at Scopus
  171. A. Höglund, P. Dönnes, T. Blum, H. Adolph, and O. Kohlbacher, “MultiLoc: prediction of protein subcellular localization using N-terminal targeting sequences, sequence motifs and amino acid composition,” Bioinformatics, vol. 22, no. 10, pp. 1158–1165, 2006. View at Publisher · View at Google Scholar · View at Scopus
  172. P. Horton, K. Park, T. Obayashi et al., “WoLF PSORT: protein localization predictor,” Nucleic Acids Research, vol. 35, no. 2, pp. W585–W587, 2007. View at Publisher · View at Google Scholar · View at Scopus
  173. K. J. Won, X. Zhang, T. Wang et al., “Comparative annotation of functional regions in the human genome using epigenomic data,” Nucleic Acids Research, vol. 41, no. 8, pp. 4423–4432, 2013. View at Publisher · View at Google Scholar · View at Scopus
  174. A. B. Munkacsi, A. F. Porto, and S. L. Sturley, “Niemann-Pick type C disease proteins: orphan transporters or membrane rheostats?” Future Lipidology, vol. 2, no. 3, pp. 357–367, 2007. View at Publisher · View at Google Scholar · View at Scopus
  175. D. Avram, A. Fields, K. Pretty On Top, D. J. Nevrivy, J. E. Ishmael, and M. Leid, “Isolation of a novel family of C2H2 zinc finger proteins implicated in transcriptional repression mediated by chicken ovalbumin upstream promoter transcription factor (COUP-TF) orphan nuclear receptors,” The Journal of Biological Chemistry, vol. 275, no. 14, pp. 10315–10322, 2000. View at Publisher · View at Google Scholar · View at Scopus
  176. J. Harrow, A. Frankish, J. M. Gonzalez et al., “GENCODE: the reference human genome annotation for the ENCODE project,” Genome Research, vol. 22, no. 9, pp. 1760–1774, 2012. View at Publisher · View at Google Scholar · View at Scopus
  177. H. Chen, Y. Tian, W. Shu, X. Bo, and S. Wang, “Comprehensive identification and annotation of cell type-specific and ubiquitous CTCF-binding sites in the human genome,” PLoS ONE, vol. 7, Article ID e41374, 2012. View at Publisher · View at Google Scholar · View at Scopus
  178. H. Jia, M. Osak, G. K. Bogu, L. W. Stanton, R. Johnson, and L. Lipovich, “Genome-wide computational identification and manual annotation of human long noncoding RNA genes,” RNA, vol. 16, no. 8, pp. 1478–1487, 2010. View at Publisher · View at Google Scholar · View at Scopus
  179. R. Guigó, P. Flicek, J. F. Abril et al., “EGASP: the human ENCODE Genome Annotation Assessment Project,” Genome Biology, vol. 7, supplement 1, article S2, 31 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  180. P. Radivojac, W. T. Clark, T. R. Oron et al., “A large-scale evaluation of computational protein function prediction,” Nature Methods, vol. 10, pp. 221–227, 2013. View at Google Scholar
  181. J. Gillis and P. Pavlidis, “Characterizing the state of the art in the computational assignment of gene function: Lessons from the first critical assessment of functional annotation (CAFA),” BMC Bioinformatics, vol. 14, no. 3, article S15, 2013. View at Publisher · View at Google Scholar · View at Scopus
  182. Z. Zhang, Y. Zheng, M. Petukh, A. Pegg, Y. Ikeguchi, and E. Alexov, “Enhancing human spermine synthase activity by engineered mutations,” PLoS Computational Biology, vol. 9, no. 2, Article ID e1002924, 2013. View at Publisher · View at Google Scholar · View at Scopus
  183. Z. Zhang, J. Norris, V. Kalscheuer et al., “A Y328C missense mutation in spermine synthase causes a mild form of snyder-robinson syndrome,” Human Molecular Genetics, vol. 22, no. 18, pp. 3789–3797, 2013. View at Publisher · View at Google Scholar · View at Scopus
  184. D. H. Spencer, K. L. Bubb, and M. V. Olson, “Detecting disease-causing mutations in the human genome by haplotype matching,” American Journal of Human Genetics, vol. 79, no. 5, pp. 958–964, 2006. View at Publisher · View at Google Scholar · View at Scopus
  185. B. B. Fitterer, N. A. Antonishyn, P. L. Hall, and D. C. Lehotay, “A polymerase chain reaction-based genotyping assay for detecting a novel sandhoff disease-causing mutation,” Genetic Testing and Molecular Biomarkers, vol. 16, no. 5, pp. 401–405, 2012. View at Publisher · View at Google Scholar · View at Scopus
  186. A. J. P. Smith, J. Palmen, W. Putt, P. J. Talmud, S. E. Humphries, and F. Drenos, “Application of statistical and functional methodologies for the investigation of genetic determinants of coronary heart disease biomarkers: lipoprotein lipase genotype and plasma triglycerides as an exemplar,” Human Molecular Genetics, vol. 19, no. 20, Article ID ddq308, pp. 3936–3947, 2010. View at Publisher · View at Google Scholar · View at Scopus
  187. S. D. Ramsey, D. Veenstra, S. R. Tunis, L. Garrison, J. J. Crowley, and L. H. Baker, “How comparative effectiveness research can help advance “personalized medicine” in cancer treatment,” Health Affairs, vol. 30, no. 12, pp. 2259–2268, 2011. View at Publisher · View at Google Scholar · View at Scopus
  188. C. A. Chapleau, J. Lane, J. Larimore, W. Li, L. Pozzo-Miller, and A. K. Percy, “Recent progress in Rett syndrome and MECP2 dysfunction: assessment of potential treatment options,” Future Neurology, vol. 8, no. 1, pp. 21–28, 2013. View at Publisher · View at Google Scholar · View at Scopus
  189. A. Banerjee, E. Romero-Lorenzo, and M. Sur, “MeCP2: making sense of missense in Rett syndrome,” Cell Research, vol. 23, pp. 1244–1246, 2013. View at Publisher · View at Google Scholar · View at Scopus
  190. K. N. McFarland, M. N. Huizenga, S. B. Darnell et al., “MeCP2: a novel Huntingtin interactor,” Human Molecular Genetics, vol. 23, no. 4, pp. 1036–1044, 2014. View at Publisher · View at Google Scholar
  191. B. Suter, D. Treadwell-Deering, H. Y. Zoghbi, D. G. Glaze, and J. L. Neul, “Brief report: MECP2 mutations in people without rett syndrome,” Journal of Autism and Developmental Disorders, vol. 44, no. 3, pp. 703–711, 2014. View at Publisher · View at Google Scholar · View at Scopus
  192. R. Bowser, “Race as a proxy for drug response: the dangers and challenges of ethnic drugs,” De Paul Law Review, vol. 53, no. 3, pp. 1111–1126, 2004. View at Google Scholar · View at Scopus
  193. S. L. Chan, C. Suo, S. C. Lee, B. C. Goh, K. S. Chia, and Y. Y. Teo, “Translational aspects of genetic factors in the prediction of drug response variability: a case study of warfarin pharmacogenomics in a multi-ethnic cohort from Asia,” Pharmacogenomics Journal, vol. 12, no. 4, pp. 312–318, 2012. View at Publisher · View at Google Scholar · View at Scopus
  194. D. E. Johnson, K. Park, and D. A. Smith, “Ethnic variation in drug response: Implications for the development and regulation of drugs,” Current Opinion in Drug Discovery and Development, vol. 11, no. 1, pp. 29–31, 2008. View at Google Scholar · View at Scopus
  195. J. M. Gorman, “Gender differences in depression and response to psychotropic medication,” Gender Medicine, vol. 3, no. 2, pp. 93–109, 2006. View at Publisher · View at Google Scholar · View at Scopus
  196. S. Bano, S. Akhter, and M. I. Afridi, “Gender based response to fluoxetine hydrochloride medication in endogenous depression,” Journal of the College of Physicians and Surgeons Pakistan, vol. 14, no. 3, pp. 161–165, 2004. View at Google Scholar · View at Scopus
  197. A. R. Ferrari, R. Guerrini, G. Gatti, M. G. Alessandrì, P. Bonanni, and E. Perucca, “Influence of dosage, age, and co-medication on plasma topiramate concentrations in children and adults with severe epilepsy and preliminary observations on correlations with clinical response,” Therapeutic Drug Monitoring, vol. 25, no. 6, pp. 700–708, 2003. View at Publisher · View at Google Scholar · View at Scopus
  198. T. Q. Tran, C. Z. Grimes, D. Lai, C. L. Troisi, and L. Y. Hwang, “Effect of age and frequency of injections on immune response to hepatitis B vaccination in drug users,” Vaccine, vol. 30, no. 2, pp. 342–349, 2012. View at Publisher · View at Google Scholar · View at Scopus
  199. V. Y. Martiny and M. A. Miteva, “Advances in molecular modeling of human cytochrome P450 polymorphism,” Journal of Molecular Biology, vol. 425, pp. 3978–3992, 2013. View at Google Scholar
  200. M. E. Stauble, A. W. Moore, and L. J. Langman, “Hydrocodone in postoperative personalized pain management: pro-drug or drug?” Clinica Chimica Acta, vol. 429, pp. 26–29, 2014. View at Publisher · View at Google Scholar
  201. K. Handa, I. Nakagome, N. Yamaotsu, H. Gouda, and S. Hirono, “In silico study on the inhibitory interaction of drugs with wild-type CYP2D6.1 and the natural variant CYP2D6.17,” Drug Metabolism and Pharmacokinetics, vol. 29, no. 1, pp. 52–60, 2014. View at Publisher · View at Google Scholar
  202. B. Moy, D. Tu, J. L. Pater et al., “Clinical outcomes of ethnic minority women in MA.17: a trial of letrozole after 5 years of tamoxifen in postmenopausal women with early stage breast cancer,” Annals of Oncology, vol. 17, no. 11, pp. 1637–1643, 2006. View at Publisher · View at Google Scholar · View at Scopus
  203. M. Zhan, J. A. Flaws, L. Gallicchio, K. Tkaczuk, L. M. Lewis, and R. Royak-Schaler, “Profiles of tamoxifen-related side effects by race and smoking status in women with breast cancer,” Cancer Detection and Prevention, vol. 31, no. 5, pp. 384–390, 2007. View at Publisher · View at Google Scholar · View at Scopus
  204. A. N. Tucker, K. A. Tkaczuk, L. M. Lewis, D. Tomic, C. K. Lim, and J. A. Flaws, “Polymorphisms in cytochrome P4503A5 (CYP3A5) may be associated with race and tumor characteristics, but not metabolism and side effects of tamoxifen in breast cancer patients,” Cancer Letters, vol. 217, no. 1, pp. 61–72, 2005. View at Publisher · View at Google Scholar · View at Scopus
  205. P. C. Ng, S. S. Murray, S. Levy, and J. C. Venter, “An agenda for personalized medicine,” Nature, vol. 461, no. 7265, pp. 724–726, 2009. View at Publisher · View at Google Scholar · View at Scopus
  206. Y. Bromberg, “Building a genome analysis pipeline to predict disease risk and prevent disease,” Journal of Molecular Biology, vol. 425, no. 21, pp. 3993–4005, 2013. View at Publisher · View at Google Scholar · View at Scopus
  207. J. D. Momper and J. A. Wagner, “Therapeutic drug monitoring as a component of personalized medicine: applications in pediatric drug development,” Clinical Pharmacology & Therapeutics, vol. 95, pp. 138–140, 2014. View at Publisher · View at Google Scholar
  208. S. J. Bielinski, J. E. Olson, J. Pathak, R. M. Weinshilboum, and L. Wang, “Preemptive genotyping for personalized medicine: design of the right drug, right dose, right time-using genomic data to individualize treatment protocol,” Mayo Clinic Proceedings, vol. 89, pp. 25–33, 2014. View at Google Scholar
  209. W. Burke, S. Brown Trinidad, and N. A. Press, “Essential elements of personalized medicine,” Urologic Oncology, vol. 32, no. 2, pp. 193–197, 2014. View at Publisher · View at Google Scholar
  210. F. R. Vogenberg, C. I. Barash, and M. Pursel, “Personalized medicine: part 2: ethical, legal, and regulatory issues,” Pharmacy and Therapeutics, vol. 35, pp. 624–642, 2010. View at Google Scholar
  211. L. S. Welch, K. Ringen, J. Dement et al., “Beryllium disease among construction trade workers at department of energy nuclear sites,” American Journal of Industrial Medicine, vol. 56, no. 10, pp. 1125–1136, 2013. View at Publisher · View at Google Scholar · View at Scopus
  212. A. Kricker, B. K. Armstrong, A. J. McMichael, S. Madronich, and F. de Gruijl, “Skin cancer and ultraviolet,” Nature, vol. 368, no. 6472, p. 594, 1994. View at Publisher · View at Google Scholar · View at Scopus
  213. E. R. Park, J. M. Streck, I. F. Gareen et al., “A qualitative study of lung cancer risk perceptions and smoking beliefs among national lung screening trial participants,” Nicotine & Tobacco Research, vol. 16, pp. 166–173, 2014. View at Google Scholar
  214. B. S. McEwen and L. Getz, “Lifetime experiences, the brain and personalized medicine: an integrative perspective,” Metabolism, vol. 62, supplement 1, pp. S20–S26, 2013. View at Publisher · View at Google Scholar · View at Scopus
  215. K. A. Mussatto, R. G. Hoffmann, G. M. Hoffman, J. S. Tweddell, and L. Bear, “Risk and prevalence of developmental delay in young children with congenital heart disease,” Pediatrics, vol. 133, pp. e570–e577, 2014. View at Publisher · View at Google Scholar
  216. A. R. Miller, “Lifetime care for patients with autism,” CMAJ, vol. 182, no. 10, pp. 1079–1080, 2010. View at Publisher · View at Google Scholar · View at Scopus
  217. J. van der Leeuw, P. M. Ridker, Y. van der Graaf, and F. L. Visseren, “Personalized cardiovascular disease prevention by applying individualized prediction of treatment effects,” European Heart Journal, vol. 35, no. 13, pp. 837–843, 2014. View at Publisher · View at Google Scholar
  218. E. Faulkner, L. Annemans, L. Garrison et al., “Challenges in the development and reimbursement of personalized medicine-payer and manufacturer perspectives and implications for health economics and outcomes research: a report of the ISPOR personalized medicine special interest group,” Value in Health, vol. 15, no. 8, pp. 1162–1171, 2012. View at Publisher · View at Google Scholar · View at Scopus
  219. L. Clarke, X. Zheng-Bradley, R. Smith et al., “The 1000 genomes project: data management and community access,” Nature Methods, vol. 9, no. 5, pp. 459–462, 2012. View at Google Scholar · View at Scopus
  220. G. R. Abecasis, D. Altshuler, A. Auton, L. D. Brooks, and R. M. Durbin, “A map of human genome variation from population-scale sequencing,” Nature, vol. 467, pp. 1061–1073, 2010. View at Google Scholar
  221. T. A. de Beer, R. A. Laskowski, S. L. Parks et al., “Amino acid changes in disease-associated variants differ radically from variants observed in the 1000 genomes project dataset,” PLOS Computational Biology, vol. 9, no. 12, Article ID e1003382, 2013. View at Publisher · View at Google Scholar