Table of Contents
Advances in Biology
Volume 2014 (2014), Article ID 903259, 8 pages
http://dx.doi.org/10.1155/2014/903259
Research Article

The Role of TWIST in Angiogenesis and Cell Migration in Giant Cell Tumor of Bone

Department of Surgery, McMaster University, 711 Concession Street, B3 Surgical Offices, Hamilton, ON, Canada L8V 1C3

Received 13 February 2014; Revised 7 April 2014; Accepted 22 April 2014; Published 14 May 2014

Academic Editor: Julie Teruya-Feldstein

Copyright © 2014 Shalini Singh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Asagiri and H. Takayanagi, “The molecular understanding of osteoclast differentiation,” Bone, vol. 40, no. 2, pp. 251–264, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Ghert, N. Simunovic, R. W. Cowan, N. Colterjohn, and G. Singh, “Properties of the stromal cell in giant cell tumor of bone,” Clinical Orthopaedics and Related Research, no. 459, pp. 8–13, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. S. R. Goldring, A. L. Schiller, and H. J. Mankin, “Characterization of cells from human giant cell tumors of bone,” Clinical Orthopaedics and Related Research, vol. 204, pp. 59–75, 1986. View at Google Scholar · View at Scopus
  4. M. Nishimura, K. Yuasa, K. Mori et al., “Cytological properties of stromal cells derived from giant cell tumor of bone (GCTSC) which can induce osteoclast formation of human blood monocytes without cell to cell contact,” Journal of Orthopaedic Research, vol. 23, no. 5, pp. 979–987, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Katz, M. Nyska, and E. Okon, “Growth rate analysis of lung metastases from histologically benign giant cell tumor of bone,” Cancer, vol. 59, no. 10, pp. 1831–1836, 1987. View at Google Scholar · View at Scopus
  6. D. J. McDonald, F. H. Sim, R. A. McLeod, and D. C. Dahlin, “Giant-cell tumor of bone,” Journal of Bone and Joint Surgery. American, vol. 68, no. 2, pp. 235–242, 1986. View at Google Scholar · View at Scopus
  7. J. Folkman, “Tumor angiogenesis: a possible control point in tumor growth,” Annals of Internal Medicine, vol. 82, no. 1, pp. 96–100, 1975. View at Google Scholar · View at Scopus
  8. J. Folkman, “What is the evidence that tumors are angiogenesis dependent?” Journal of the National Cancer Institute, vol. 82, no. 1, pp. 4–6, 1990. View at Google Scholar · View at Scopus
  9. P. Nyberg, L. Xie, and R. Kalluri, “Endogenous inhibitors of angiogenesis,” Cancer Research, vol. 65, no. 10, pp. 3967–3979, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Yang, S. A. Mani, J. L. Donaher et al., “Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis,” Cell, vol. 117, no. 7, pp. 927–939, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Thisse, M. E. Messal, and F. Perrin-Schmitt, “The twist gene: isolation of a Drosophila zygotle gene necessary for the establishment of dorsoventral pattern,” Nucleic Acids Research, vol. 15, no. 8, pp. 3439–3453, 1987. View at Publisher · View at Google Scholar · View at Scopus
  12. R. F. Niu, L. Zhang, G. M. Xi et al., “Up-regulation of twist induces angiogenesis and correlates with metastasis in hepatocellular carcinoma,” Journal of Experimental and Clinical Cancer Research, vol. 26, no. 3, pp. 385–394, 2007. View at Google Scholar · View at Scopus
  13. S. Singh, I. W. Y. Mak, R. W. Cowan, R. Turcotte, G. Singh, and M. Ghert, “The role of TWIST as a regulator in giant cell tumor of bone,” Journal of Cellular Biochemistry, vol. 112, no. 9, pp. 2287–2295, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Singh, M. Singh, I. W. Mak, R. Turcotte, and M. Ghert, “Investigation of FGFR2-IIIC signaling via FGF-2 ligand for advancing GCT stromal cell differentiation,” PLoS ONE, vol. 7, Article ID e46769, 2012. View at Google Scholar
  15. I. W. Mak, R. E. Turcotte, and M. Ghert, “Parathyroid hormone-related protein (PTHrP) modulates adhesion, migration and invasion in bone tumor cells,” Bone, vol. 55, no. 1, pp. 198–207, 2013. View at Publisher · View at Google Scholar
  16. J. Fu, L. Qin, T. He et al., “The TWIST/Mi2/NuRD protein complex and its essential role in cancer metastasis,” Cell Research, vol. 21, no. 2, pp. 275–289, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. S. M. Kumta, L. Huang, Y. Y. Cheng, L. T. C. Chow, K. M. Lee, and M. H. Zheng, “Expression of VEGF and MMP-9 in giant cell tumor of bone and other osteolytic lesions,” Life Sciences, vol. 73, no. 11, pp. 1427–1436, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Matsumoto, Y. Okada, J.-I. Fukushi et al., “Role of the VEGF-Flt-1-FAK pathway in the pathogenesis of osteoclastic bone destruction of giant cell tumors of bone,” Journal of Orthopaedic Surgery and Research, vol. 5, no. 1, article 85, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. R. M. Taylor, T. G. Kashima, H. J. Knowles, and N. A. Athanasou, “VEGF, FLT3 ligand, PlGF and HGF can substitute for M-CSF to induce human osteoclast formation: implications for giant cell tumour pathobiology,” Laboratory Investigation, vol. 92, pp. 1398–1406, 2012. View at Google Scholar
  20. M. S. Lee, G. N. Lowe, D. D. Strong, J. E. Wergedal, and C. A. Glackin, “TWIST, a basic helix-loop-helix transcription factor, can regulate the human osteogenic lineage,” Journal of Cellular Biochemistry, vol. 75, pp. 566–577, 1999. View at Google Scholar
  21. F. Vesuna, P. van Diest, J. H. Chen, and V. Raman, “Twist is a transcriptional repressor of E-cadherin gene expression in breast cancer,” Biochemical and Biophysical Research Communications, vol. 367, no. 2, pp. 235–241, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. M.-H. Yang, D. S.-S. Hsu, H.-W. Wang et al., “Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition,” Nature Cell Biology, vol. 12, no. 10, pp. 982–992, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Mironchik, P. T. Winnard Jr., F. Vesuna et al., “Twist overexpression induces in vivo angiogenesis and correlates with chromosomal instability in breast cancer,” Cancer Research, vol. 65, no. 23, pp. 10801–10809, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. A. John and G. Tuszynski, “The role of matrix metalloproteinases in tumor angiogenesis and tumor metastasis,” Pathology and Oncology Research, vol. 7, no. 1, pp. 14–23, 2001. View at Google Scholar · View at Scopus
  25. S.-O. Yoon, S.-J. Park, C.-H. Yun, and A.-S. Chung, “Roles of matrix metalloproteinases in tumor metastasis and angiogenesis,” Journal of Biochemistry and Molecular Biology, vol. 36, no. 1, pp. 128–137, 2003. View at Google Scholar · View at Scopus
  26. L. Zhang, M. Yang, L. Gan et al., “DLX4 upregulates TWIST and enhances tumor migration, invasion and metastasis,” International Journal of Biological Sciences, vol. 8, pp. 1178–1187, 2012. View at Google Scholar
  27. T. K. Lee, R. T. P. Poon, A. P. Yuen et al., “Twist overexpression correlates with hepatocellular carcinoma metastasis through induction of epithelial-mesenchymal transition,” Clinical Cancer Research, vol. 12, no. 18, pp. 5369–5376, 2006. View at Publisher · View at Google Scholar · View at Scopus