Table of Contents Author Guidelines Submit a Manuscript
Advances in Bioinformatics
Volume 2009, Article ID 193947, 11 pages
http://dx.doi.org/10.1155/2009/193947
Research Article

FlowFP: A Bioconductor Package for Fingerprinting Flow Cytometric Data

Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, 207 John Morgan Bldg., Philadelphia, PA 19104-6082, USA

Received 1 April 2009; Accepted 18 June 2009

Academic Editor: Raphael Gottardo

Copyright © 2009 Wade T. Rogers and Herbert A. Holyst. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. K. Chattopadhyay, C.-M. Hogerkorp, and M. Roederer, “A chromatic explosion: the development and future of multiparameter flow cytometry,” Immunology, vol. 125, no. 4, pp. 441–449, 2008. View at Publisher · View at Google Scholar
  2. J. P. McCoy Jr., “Basic principles of flow cytometry,” Hematology/Oncology Clinics of North America, vol. 16, no. 2, pp. 229–243, 2002. View at Publisher · View at Google Scholar
  3. S. Murthi, S. Sankaranarayanan, B. Xia, G. M. Lambert, J. J. Rodriguez, and D. W. Galbraith, “Performance analysis of a dual-buffer architecture for digital flow cytometry,” Cytometry Part A, vol. 66, no. 2, pp. 109–118, 2005. View at Publisher · View at Google Scholar · View at PubMed
  4. A. S. Kelliher, D. W. Parent, D. C. Anderson et al., “Novel use of the BD FAGSTM SPA to automate custom monoclonal antibody panel preparations for immunophenotyping,” Cytometry Part B, vol. 66, no. 1, pp. 40–45, 2005. View at Publisher · View at Google Scholar · View at PubMed
  5. I. V. Gates, Y. Zhang, C. Shambaugh et al., “Quantitative measurement of varicella-zoster virus infection by semiautomated flow cytometry,” Applied and Environmental Microbiology, vol. 75, no. 7, pp. 2027–2036, 2009. View at Google Scholar
  6. P. K. Chattopadhyay, D. A. Price, T. F. Harper et al., “Quantum dot semiconductor nanocrystals for immunophenotyping by polychromatic flow cytometry,” Nature Medicine, vol. 12, no. 8, pp. 972–977, 2006. View at Publisher · View at Google Scholar · View at PubMed
  7. R. Achuthanandam, J. Quinn, R. J. Capocasale, P. J. Bugelski, L. Hrebien, and M. Kam, “Sequential univariate gating approach to study the effects of erythropoietin in murine bone marrow,” Cytometry Part A, vol. 73, no. 8, pp. 702–714, 2008. View at Publisher · View at Google Scholar · View at PubMed
  8. C. Chan, F. Feng, J. Ottinger, D. Foster, M. West, and T. B. Kepler, “Statistical mixture modeling for cell subtype identification in flow cytometry,” Cytometry Part A, vol. 73, no. 8, pp. 693–701, 2008. View at Google Scholar
  9. P. Lloyd-Evans, A. R. Guest, E. B. Austin, and M. L. Scott, “Use of a phycoerythrin-conjugated anti-glycophorin A monoclonal antibody as a double label to improve the accuracy of FMH quantification by flow cytometry,” Transfusion Medicine, vol. 9, no. 2, pp. 155–160, 1999. View at Publisher · View at Google Scholar
  10. M. Roederer, W. Moore, A. Treister, R. R. Hardy, and L. A. Herzenberg, “Probability binning comparison: a metric for quantitating multivariate distribution differences,” Cytometry, vol. 45, no. 1, pp. 47–55, 2001. View at Publisher · View at Google Scholar
  11. W. T. Rogers, A. R. Moser, H. A. Holyst et al., “Cytometric fingerprinting: quantitative characterization of multivariate distributions,” Cytometry Part A, vol. 73, no. 5, pp. 430–441, 2008. View at Publisher · View at Google Scholar · View at PubMed
  12. R Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2008.
  13. R. C. Gentleman, V. J. Carey, D. M. Bates et al., “Bioconductor: open software development for computational biology and bioinformatics,” Genome Biology, vol. 5, no. 10, p. R80, 2004. View at Google Scholar
  14. B. Ellis, P. Haaland, F. Hahne et al., “flowCore: basic structures for flow cytometry data,” 2009, http://bioconductor.org/packages/2.3/bioc/html/flowCore.html.
  15. F. Hahne, N. LeMeur, R. R. Brinkman et al., “flowCore: a Bioconductor package for high throughput flow cytometry,” BMC Bioinformatics, vol. 10, article 106, 2009. View at Publisher · View at Google Scholar · View at PubMed
  16. M. J. Borowitz, K. L. Guenther, K. E. Shults, and G. T. Stelzer, “Immunophenotyping of acute leukemia by flow cytometric analysis: use of CD45 and right-angle light scatter to gate on leukemic blasts in three-color analysis,” American Journal of Clinical Pathology, vol. 100, no. 5, pp. 534–540, 1993. View at Google Scholar
  17. K. Nishikawa, T. Miyasaki, N. Tsukaguchi, Y. Noma, K. Nakagawa, and N. Narita, “CD45 gating of acute leukemia,” Rinsho Byori, vol. 44, no. 6, pp. 548–553, 1996. View at Google Scholar
  18. F. Lacombe, F. Durrieu, A. Briais et al., “Flow cytometry CD45 gating for immunophenotyping of acute myeloid leukemia,” Leukemia, vol. 11, no. 11, pp. 1878–1886, 1997. View at Google Scholar
  19. W. Cui, W. Ma, and Q. Lin, “CD45-gating for flow cytometric immunophenotyping of leukemia,” Zhongguo Yi Xue Ke Xue Yuan Xue Bao, vol. 22, no. 2, pp. 199–203, 2000. View at Google Scholar
  20. R. Gelman and C. Wilkening, “Analyses of quality assessment studies using CD45 for gating lymphocytes for CD3+4+%,” Cytometry Part B, vol. 42, no. 1, pp. 1–4, 2000. View at Publisher · View at Google Scholar
  21. R. J. Lock, P. F. Virgo, and R. S. Evely, “Pitfalls of CD45 gating strategies in leukaemia immunophenotyping,” Clinical and Laboratory Haematology, vol. 25, no. 1, p. 67, 2003. View at Publisher · View at Google Scholar
  22. S. H. Maljaei, I. Asvadi-E-Kermani, J. Eivazi-E-Ziaei, A. Nikanfar, and J. Vaez, “Usefulness of CD45 density in the diagnosis of B-cell chronic lymphoproliferative disorders,” Indian Journal of Medical Sciences, vol. 59, no. 5, pp. 187–194, 2005. View at Google Scholar
  23. M. Inokuma, C. dela Rosa, C. Schmitt et al., “Functional T cell responses to tumor antigens in breast cancer patients have a distinct phenotype and cytokine signature,” Journal of Immunology, vol. 179, no. 4, pp. 2627–2633, 2007. View at Google Scholar
  24. M. Inokuma, C. dela Rosa, C. Schmitt et al., 96-well plate data deposited with Flow Informatics and Computational Cytometry Society website, 2008, http://www.ficcs.org/software.html#Data_Files.
  25. Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate-a practical and powerful approach to multiple testing,” Journal of the Royal Statistical Society Series B, vol. 57, no. 1, pp. 289–300, 1995. View at Google Scholar
  26. K. I. Kim and M. A. van de Wiel, “Effects of dependence in high-dimensional multiple testing problems,” BMC Bioinformatics, vol. 9, article 114, 2008. View at Publisher · View at Google Scholar · View at PubMed
  27. C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20, no. 3, pp. 273–297, 1995. View at Publisher · View at Google Scholar
  28. E. Dimitriadou, K. Hornik, F. Leisch et al., “e1071: Misc Functions of the Department of Statistics,” 2008, http://cran.r-project.org/src/contrib/e1071_1.5-19.tar.gz.
  29. K. Lo, R. R. Brinkman, and R. Gottardo, “Automated gating of flow cytometry data via robust model-based clustering,” Cytometry Part A, vol. 73, no. 4, pp. 321–332, 2008. View at Publisher · View at Google Scholar · View at PubMed
  30. D. R. Parks, M. Roederer, and W. A. Moore, “A new “logicle” display method avoids deceptive effects of logarithmic scaling for low signals and compensated data,” Cytometry Part A, vol. 69, no. 6, pp. 541–551, 2006. View at Publisher · View at Google Scholar
  31. J. W. Tung, D. R. Parks, W. A. Moore, L. A. Herzenberg, and L. A. Herzenberg, “New approaches to fluorescence compensation and visualization of FACS data,” Clinical Immunology, vol. 110, no. 3, pp. 277–283, 2004. View at Publisher · View at Google Scholar · View at PubMed
  32. D. Novo and J. Wood, “Flow cytometry histograms: transformations, resolution, and display,” Cytometry Part A, vol. 73, no. 8, pp. 685–692, 2008. View at Publisher · View at Google Scholar · View at PubMed