Table of Contents Author Guidelines Submit a Manuscript
Advances in Bioinformatics
Volume 2013, Article ID 171530, 10 pages
http://dx.doi.org/10.1155/2013/171530
Research Article

Spectral Analysis on Time-Course Expression Data: Detecting Periodic Genes Using a Real-Valued Iterative Adaptive Approach

1Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843-3128, USA
2Computational Biology Division, Translational Genomics Research Institute, Phoenix, AZ 85004-2101, USA

Received 26 October 2012; Accepted 23 January 2013

Academic Editor: Mohamed Nounou

Copyright © 2013 Kwadwo S. Agyepong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Zhao, K. Agyepong, E. Serpedin, and E. R. Dougherty, “Detecting periodic genes from irregularly sampled gene expressions: a comparison study,” EURASIP Journal on Bioinformatics and Systems Biology, vol. 2008, Article ID 769293, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. P. T. Spellman, G. Sherlock, M. Q. Zhang et al., “Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization,” Molecular Biology of the Cell, vol. 9, no. 12, pp. 3273–3297, 1998. View at Google Scholar · View at Scopus
  3. G. Rustici, J. Mata, K. Kivinen et al., “Periodic gene expression program of the fission yeast cell cycle,” Nature Genetics, vol. 36, no. 8, pp. 809–817, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Menges, L. Hennig, W. Gruissem, and J. A. H. Murray, “Cell cycle-regulated gene expression in Arabidopsis,” Journal of Biological Chemistry, vol. 277, no. 44, pp. 41987–42002, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Ahdesmäki, H. Lähdesmäki, R. Pearson, H. Huttunen, and O. Yli-Harja, “Robust detection of periodic time series measured from biological systems,” BMC Bioinformatics, vol. 6, article 117, 2005. View at Publisher · View at Google Scholar
  6. M. Ahdesmäki, H. Lähdesmäki, A. Gracey et al., “Robust regression for periodicity detection in non-uniformly sampled time-course gene expression data,” BMC Bioinformatics, vol. 8, article 233, 2007. View at Publisher · View at Google Scholar
  7. E. F. Glynn, J. Chen, and A. R. Mushegian, “Detecting periodic patterns in unevenly spaced gene expression time series using Lomb-Scargle periodograms,” Bioinformatics, vol. 22, no. 3, pp. 310–316, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Yang, C. Zhang, and Z. Su, “LSPR: an integrated periodicity detection algorithm for unevenly sampled temporal microarray data,” Bioinformatics, vol. 27, no. 7, pp. 1023–1025, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. E. R. Dougherty, “Small sample issues for microarray-based classification,” Comparative and Functional Genomics, vol. 2, no. 1, pp. 28–34, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Tu, G. Stolovitzky, and U. Klein, “Quantitative noise analysis for gene expression microarray experiments,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 22, pp. 14031–14036, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. Z. Bar-Joseph, “Analyzing time series gene expression data,” Bioinformatics, vol. 20, no. 16, pp. 2493–2503, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Stoica, J. Li, and H. He, “Spectral analysis of nonuniformly sampled data: a new approach versus the periodogram,” IEEE Transactions on Signal Processing, vol. 57, no. 3, pp. 843–858, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Fan and Q. Yao, Nonlinear Time Series: Nonparametric and Parametric Methods, Springer, New York, NY, USA, 2003.
  14. A. W. C. Liew, N. F. Law, X. Q. Cao, and H. Yan, “Statistical power of Fisher test for the detection of short periodic gene expression profiles,” Pattern Recognition, vol. 42, no. 4, pp. 549–556, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. V. Berger, “Pros and cons of permutation tests in clinical trials,” Statistics in Medicine, vol. 19, no. 10, pp. 1319–1328, 2000. View at Publisher · View at Google Scholar
  16. A. P. Bradley, “The use of the area under the ROC curve in the evaluation of machine learning algorithms,” Pattern Recognition, vol. 30, no. 7, pp. 1145–1159, 1997. View at Google Scholar · View at Scopus
  17. J. R. Chubb, T. Trcek, S. M. Shenoy, and R. H. Singer, “Transcriptional pulsing of a developmental gene,” Current Biology, vol. 16, no. 10, pp. 1018–1025, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Pramila, W. Wu, W. Noble, and L. Breeden, “Periodic genes of the yeast Saccharomyces cerevisiae: a combined analysis of five cell cycle data sets,” 2007.
  19. U. Lichtenberg, L. J. Jensen, A. Fausbøll, T. S. Jensen, P. Bork, and S. Brunak, “Comparison of computational methods for the identification of cell cycle-regulated genes,” Bioinformatics, vol. 21, no. 7, pp. 1164–1171, 2005. View at Publisher · View at Google Scholar
  20. A. W. C. Liew, J. Xian, S. Wu, D. Smith, and H. Yan, “Spectral estimation in unevenly sampled space of periodically expressed microarray time series data,” BMC Bioinformatics, vol. 8, article 137, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. D. Johansson, P. Lindgren, and A. Berglund, “A multivariate approach applied to microarray data for identification of genes with cell cycle-coupled transcription,” Bioinformatics, vol. 19, no. 4, pp. 467–473, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. I. Simon, J. Barnett, N. Hannett et al., “Serial regulation of transcriptional regulators in the yeast cell cycle,” Cell, vol. 106, no. 6, pp. 697–708, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. T. I. Lee, N. J. Rinaldi, F. Robert et al., “Transcriptional regulatory networks in Saccharomyces cerevisiae,” Science, vol. 298, no. 5594, pp. 799–804, 2002. View at Publisher · View at Google Scholar
  24. H. W. Mewes, D. Frishman, U. Güldener et al., “MIPS: a database for genomes and protein sequences,” Nucleic Acids Research, vol. 30, no. 1, pp. 31–34, 2002. View at Publisher · View at Google Scholar