Table of Contents Author Guidelines Submit a Manuscript
Advances in Bioinformatics
Volume 2013, Article ID 191586, 8 pages
http://dx.doi.org/10.1155/2013/191586
Research Article

Using Protein Clusters from Whole Proteomes to Construct and Augment a Dendrogram

1School of Electrical Engineering and Computer Science, Washington State University, P.O. Box 642752, Pullman, WA 99164-2752, USA
2Paul G. Allen School for Global Animal Health, Washington State University, P.O. Box 642752, Pullman, WA 99164-2752, USA
3Department of Veterinary Microbiology and Pathology, Washington State University, P.O. Box 642752, Pullman, WA 99164-2752, USA

Received 19 November 2012; Revised 3 January 2013; Accepted 13 January 2013

Academic Editor: Yves Van de Peer

Copyright © 2013 Yunyun Zhou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. F. Smith and M. S. Waterman, “Identification of common molecular subsequences,” Journal of Molecular Biology, vol. 147, no. 1, pp. 195–197, 1981. View at Google Scholar · View at Scopus
  2. S. F. Altschul, T. L. Madden, A. A. Schäffer et al., “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs,” Nucleic Acids Research, vol. 25, no. 17, pp. 3389–3402, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. D. L. Brutlag, J.-P. Dautricourt, R. Diaz, J. Fier, B. Moxon, and R. Stamm, “BLAZE: an implementation of the Smith-Waterman sequence comparison algorithm on a massively parallel computer,” Computers and Chemistry, vol. 17, no. 2, pp. 203–207, 1993. View at Google Scholar · View at Scopus
  4. E. G. Shpaer, M. Robinson, D. Yee, J. D. Candlin, R. Mines, and T. Hunkapiller, “Sensitivity and selectivity in protein similarity searches: a comparison of Smith-Waterman in hardware to BLAST and FASTA,” Genomics, vol. 38, no. 2, pp. 179–191, 1996. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Wu, A. Kalyanaraman, and W. R. Cannon, “PGraph: efficient parallel construction of large-scale protein sequence homology graphs,” IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 10, Article ID 6127863, pp. 1923–1933, 2012. View at Publisher · View at Google Scholar
  6. D. Gibson, R. Kumar, and A. Tomkins, “Discovering large dense subgraphs in massive graphs,” in Proceedings of the 31st International Conference on Very Large Data Bases, pp. 721–732, September 2005. View at Scopus
  7. A. Kalyanaraman, S. Aluru, S. Kothari, and V. Brendel, “Efficient clustering of large EST data sets on parallel computers,” Nucleic Acids Research, vol. 31, no. 11, pp. 2963–2974, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. E. Bapteste, Y. Boucher, J. Leigh, and W. F. Doolittle, “Phylogenetic reconstruction and lateral gene transfer,” Trends in Microbiology, vol. 12, no. 9, pp. 406–411, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Fidelma Boyd, C. W. Hill, S. M. Rich, and D. L. Hard, “Mosaic structure of plasmids from natural populations of Escherichia coli,” Genetics, vol. 143, no. 3, pp. 1091–1100, 1996. View at Google Scholar · View at Scopus
  10. H. Ochman, J. G. Lawrence, and E. A. Grolsman, “Lateral gene transfer and the nature of bacterial innovation,” Nature, vol. 405, no. 6784, pp. 299–304, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. C. M. Thomas, “Paradigms of plasmid organization,” Molecular Microbiology, vol. 37, no. 3, pp. 485–491, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. C. M. Thomas and K. M. Nielsen, “Mechanisms of, and barriers to, horizontal gene transfer between bacteria,” Nature Reviews Microbiology, vol. 3, no. 9, pp. 711–721, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Couturier, F. Bex, P. L. Bergquist, and W. K. Maas, “Identification and classification of bacterial plasmids,” Microbiological Reviews, vol. 52, no. 3, pp. 375–395, 1988. View at Google Scholar · View at Scopus
  14. J. J. Dennis, “The evolution of IncP catabolic plasmids,” Current Opinion in Biotechnology, vol. 16, no. 3, pp. 291–298, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Huang and J. P. Gogarten, “Ancient horizontal gene transfer can benefit phylogenetic reconstruction,” Trends in Genetics, vol. 22, no. 7, pp. 361–366, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Karlin and C. Burge, “Dinucleotide relative abundance extremes: a genomic signature,” Trends in Genetics, vol. 11, no. 7, pp. 283–290, 1995. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Karlin, “Detecting anomalous gene clusters and pathogenicity islands in diverse bacterial genomes,” Trends in Microbiology, vol. 9, no. 7, pp. 335–343, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Brilli, A. Mengoni, M. Fondi, M. Bazzicalupo, P. Liò, and R. Fani, “Analysis of plasmid genes by phylogenetic profiling and visualization of homology relationships using Blast2Network,” BMC Bioinformatics, vol. 9, article 551, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Halary, J. W. Leigh, B. Cheaib, P. Lopez, and E. Bapteste, “Network analyses structure genetic diversity in independent genetic worlds,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 1, pp. 127–132, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. D. Sen, G. A. Van der Auwera, L. M. Rogers, C. M. Thomas, C. J. Brown, and E. M. Top, “Broad-host-range plasmids from agricultural soils have IncP-1 backbones with diverse accessory genes,” Applied and Environmental Microbiology, vol. 77, pp. 7975–7983, 2011. View at Google Scholar
  21. Y. Zhou, D. R. Call, and S. L. Broschat, “Genetic relationships among 527 Gram-negative bacterial plasmids,” Plasmid, vol. 68, no. 2, pp. 133–141, 2012. View at Publisher · View at Google Scholar
  22. D. R. Call, R. S. Singer, D. Meng et al., “blaCMY-2-positive IncA/C plasmids from Escherichia coli and Salmonella enterica are a distinct component of a larger lineage of plasmids,” Antimicrobial Agents and Chemotherapy, vol. 54, no. 2, pp. 590–596, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. J. L. Rodgers and W. A. Nicewander, “Thirteen ways to look at the correlation coefficient,” The American Statistician, vol. 42, pp. 59–66, 1988. View at Google Scholar
  24. M. S. Stigler, “Francis Galton's account of the invention of correlation,” Statistical Science, vol. 4, pp. 73–79, 1989. View at Google Scholar
  25. K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar, “MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods,” Molecular Biology and Evolution, vol. 28, no. 10, pp. 2731–2739, 2011. View at Publisher · View at Google Scholar
  26. M. Lescot, S. Audic, C. Robert et al., “The genome of Borrelia recurrentis, the agent of deadly louse-borne relapsing fever, is a degraded subset of tick-borne Borrelia duttonii,” PLoS Genetics, vol. 4, no. 9, Article ID e1000185, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. J. E. Purser and S. J. Norris, “Correlation between plasmid content and infectivity in Borrelia burgdorferi,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 25, pp. 13865–13870, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. P. Norberg, M. Bergstrom, V. Jethava, D. Dubhashi, and M. Hermansson, “The IncP-1 plasmid backbone adapts to different host bacterial species and evolves through homologous recombination,” Nature Communications, vol. 2, article 268, 2011. View at Publisher · View at Google Scholar
  29. A. Buda and A. Jarynowski, “Life-time of correlations and its applications,” Wydawnictwo Niezalezne, vol. 1, pp. 5–21, 2010. View at Google Scholar
  30. J. Cohen, Statistical Power Analysis For the Behavioral Sciences, Law-rence Erlbaum Associates, Hillsdale, NJ, USA, 2nd edition, 1988.