Table of Contents
Advances in Botany
Volume 2014 (2014), Article ID 208747, 17 pages
http://dx.doi.org/10.1155/2014/208747
Review Article

Plant Phenotypic Plasticity in Response to Environmental Factors

Department of Environmental Biology, Sapienza University of Rome, P.le A. Moro 5 00185, Rome, Italy

Received 8 December 2013; Revised 21 February 2014; Accepted 24 March 2014; Published 22 April 2014

Academic Editor: Shoji Mano

Copyright © 2014 Loretta Gratani. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. D. Schlichting, “Phenotypic plasticity in plants,” Plant Species Biology, vol. 17, no. 2-3, pp. 85–88, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. S. E. Sultan, “Promising directions in plant phenotypic plasticity,” Perspectives in Plant Ecology, Evolution and Systematics, vol. 6, no. 4, pp. 227–233, 2004. View at Google Scholar · View at Scopus
  3. F. Valladares, D. Sanchez-Gomez, and M. A. Zavala, “Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications,” Journal of Ecology, vol. 94, no. 6, pp. 1103–1116, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. W. E. Spencer, J. Teeri, and R. G. Wetzel, “Acclimation of photosynthetic phenotype to environmental heterogeneity,” Ecology, vol. 75, no. 2, pp. 301–314, 1994. View at Google Scholar · View at Scopus
  5. L. Gratani, P. Pesoli, M. F. Crescente, K. Aichner, and W. Larcher, “Photosynthesis as a temperature indicator in Quercus ilex L,” Global and Planetary Change, vol. 24, no. 2, pp. 153–163, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Parmesan, “Ecological and evolutionary responses to recent climate change,” Annual Review of Ecology, Evolution, and Systematics, vol. 37, pp. 637–669, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Matesanz, E. Gianoli, and F. Valladares, “Global change and the evolution of phenotypic plasticity in plants,” Annals of the New York Academy of Sciences, vol. 1206, pp. 35–55, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. M. van Kleunen and M. Fischer, “Progress in the detection of costs of phenotypic plasticity in plants,” New Phytologist, vol. 176, no. 4, pp. 727–730, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Lande, “Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation,” Journal of Evolutionary Biology, vol. 22, no. 7, pp. 1435–1446, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. A. D. Bradshaw, “Evolutionary significance of phenotypic plasticity in plants,” Advances in Genetics, vol. 13, pp. 115–155, 1965. View at Publisher · View at Google Scholar · View at Scopus
  11. S. M. Scheiner and C. J. Goodnight, “The comparison of phenotypic plasticity and genetic variation in populations of the grass Danthonia spicata,” Evolution, vol. 38, pp. 845–855, 1984. View at Google Scholar
  12. S. Via and R. Lande, “Evolution of genetic variability in a spatially heterogeneous environment: effects of genotype-environment interaction,” Genetical Research, vol. 49, no. 2, pp. 147–156, 1987. View at Google Scholar · View at Scopus
  13. S. Via, R. Gomulkiewicz, G. De Jong, S. M. Scheiner, C. D. Schlichting, and P. H. Van Tienderen, “Adaptive phenotypic plasticity: consensus and controversy,” Trends in Ecology and Evolution, vol. 10, no. 5, pp. 212–217, 1995. View at Publisher · View at Google Scholar · View at Scopus
  14. M. van Kleunen and M. Fischer, “Constraints on the evolution of adaptive phenotypic plasticity in plants,” New Phytologist, vol. 166, no. 1, pp. 49–60, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. D. D. Ackerly, S. Dudley, S. E. Sultan et al., “The evolution of plant ecophysiological traits: recent advances and future directions,” BioScience, vol. 50, no. 11, pp. 979–995, 2000. View at Google Scholar · View at Scopus
  16. T. D. Price, A. Qvarnstrom, and D. E. Irwin, “The role of phenotypic plasticity in driving genetic evolution,” Proceedings of the Royal Society B: Biological Sciences, vol. 270, pp. 1433–1440, 2003. View at Google Scholar
  17. L. Gratani, “Leaf and shoot growth dynamics of Quercus ilex L,” Acta Oecologica, vol. 17, no. 1, pp. 17–27, 1996. View at Google Scholar · View at Scopus
  18. A. Pintado, F. Valladares, and L. G. Sancho, “Exploring phenotypic plasticity in the lichen Ramalina capitata: morphology, water relations and chlorophyll content in North- and South-facing populations,” Annals of Botany, vol. 80, no. 3, pp. 345–353, 1997. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Gratani, M. Meneghini, P. Pesoli, and M. F. Crescente, “Structural and functional plasticity of Quercus ilex seedlings of different provenances in Italy,” Trees—Structure and Function, vol. 17, no. 6, pp. 515–521, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Zunzunegui, M. C. D. Barradas, F. Ain-Lhout, L. Alvarez-Cansino, M. P. Esquivias, and F. G. Novo, “Seasonal physiological plasticity and recovery capacity after summer stress in Mediterranean scrub communities,” Plant Ecology, vol. 212, no. 1, pp. 127–142, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. D. E. Waitt and D. A. Levin, “Genetic and phenotypic correlations in plants: a botanical test of Cheverud's conjecture,” Heredity, vol. 80, no. 3, pp. 310–319, 1998. View at Google Scholar · View at Scopus
  22. M. A. Arntz and L. F. Delph, “Pattern and process: evidence for the evolution of photosynthetic traits in natural populations,” Oecologia, vol. 127, no. 4, pp. 455–467, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. S. E. Sultan, “Phenotypic plasticity for plant development, function and life history,” Trends in Plant Science, vol. 5, no. 12, pp. 537–542, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. L. Gratani and M. F. Crescente, “Phenology and leaf adaptive strategies of Mediterranean maquis plants,” Ecologia Mediterranea, vol. 23, pp. 11–19, 1997. View at Google Scholar
  25. L. A. Dorn, E. H. Pyle, and J. Schmitt, “Plasticity to light cues and resources in Arabidopsis thaliana: testing for adaptive value and costs,” Evolution, vol. 54, no. 6, pp. 1982–1994, 2000. View at Google Scholar · View at Scopus
  26. F. Valladares, E. Gianoli, and J. M. Gómez, “Ecological limits to plant phenotypic plasticity,” New Phytologist, vol. 176, no. 4, pp. 749–763, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Wyka, P. Robakowski, and R. Zytkowiak, “Acclimation of leaves to contrasting irradiance in juvenile trees differing in shade tolerance,” Tree Physiology, vol. 27, no. 9, pp. 1293–1306, 2007. View at Google Scholar · View at Scopus
  28. M. B. Walters and P. B. Reich, “Seed size, nitrogen supply, and growth rate affect tree seedling survival in deep shade,” Ecology, vol. 81, no. 7, pp. 1887–1901, 2000. View at Google Scholar · View at Scopus
  29. J. Stöcklin, P. Kuss, and A. R. Pluess, “Genetic diversity, phenotypic variation and local adaptation in the alpine landscape: case studies with alpine plant species,” Botanica Helvetica, vol. 119, no. 2, pp. 125–133, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. F. S. Matos, R. Wolfgramm, F. V. Gonçalves, P. C. Cavatte, M. C. Ventrella, and F. M. DaMatta, “Phenotypic plasticity in response to light in the coffee tree,” Environmental and Experimental Botany, vol. 67, no. 2, pp. 421–427, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. W. L. Araujo, P. C. Dias, G. A. B. K. Moraes et al., “Limitations to photosynthesis in coffee leaves from different canopy positions,” Plant Physiology and Biochemistry, vol. 46, no. 10, pp. 884–890, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. Ü. Niinemets, O. Kull, and J. D. Tenhunen, “An analysis of light effects on foliar morphology, physiology, and light interception in temperate deciduous woody species of contrasting shade tolerance,” Tree Physiology, vol. 18, no. 10, pp. 681–696, 1998. View at Google Scholar · View at Scopus
  33. H. Ellenberg, Vegetation Ecology of Central Europe, Cambridge University Press, Cambridge, UK, 4th edition, 1988.
  34. H. J. Otto, Waldökologie, Eugen Ulmer, Stuttgart, Germany, 1994.
  35. L. Gratani, R. Catoni, G. Pirone, A. R. Frattaroli, and L. Varone, “Physiological and morphological leaf trait variations in two Apennine plant species in response to different altitudes,” Photosynthetica, vol. 50, no. 1, pp. 15–23, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. G. Ke and M. J. A. Werger, “Different responses to shade of evergreen and deciduous oak seedlings and the effect of acorn size,” Acta Oecologica, vol. 20, no. 6, pp. 579–586, 1999. View at Publisher · View at Google Scholar · View at Scopus
  37. F. Valladares, J. Chico, I. Aranda et al., “The greater seedling high-light tolerance of Quercus robur over Fagus sylvatica is linked to a greater physiological plasticity,” Trees—Structure and Function, vol. 16, no. 6, pp. 395–403, 2002. View at Google Scholar · View at Scopus
  38. G. Müller-Stark, Biodervisität und Nachhaltige Forstwirtschaft, Ecomed, Landsberg, Germany, 1997.
  39. A. D. Peuke, C. Schraml, W. Hartung, and H. Rennenberg, “Identification of drought-sensitive beech ecotypes by physiological parameters,” New Phytologist, vol. 154, no. 2, pp. 373–387, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. Z. Wen, Y. Ding, T. Zhao, and J. Gai, “Genetic diversity and peculiarity of annual wild soybean (G. soja Sieb. et Zucc.) from various eco-regions in China,” Theoretical and Applied Genetics, vol. 119, no. 2, pp. 371–381, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. L. Sack, P. J. Grubb, and T. Marañón, “The functional morphology of juvenile plants tolerant of strong summer drought in shaded forest understories in southern Spain,” Plant Ecology, vol. 168, no. 1, pp. 139–163, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. Ü. Niinemets, F. Valladares, and R. Ceulemans, “Leaf-level phenotypic variability and plasticity of invasive Rhododendron ponticum and non-invasive Ilex aquifolium co-occurring at two contrasting European sites,” Plant, Cell and Environment, vol. 26, no. 6, pp. 941–956, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. D. Bastlová and J. Květ, “Phenotypic plasticity in native populations of Lythrum salicaria L. across geographical gradient: between- and within-population differences,” in Ecology and Management of Alien Plant Invasions, L. Child, Ed., pp. 237–247, Backhuys, Leiden, The Netherlands, 2003. View at Google Scholar
  44. D. Q. Thompson, R. L. Stuckey, and E. B. Thompson, “Spread, impact, and control of purple loosestrife (Lythrum salicaria) in North American wetlands,” U.S. Fish and Wildlife Service, Fish and Wildlife Research Report 2, Washington, DC, USA, 1987. View at Google Scholar
  45. M. M. Mendes, L. C. Gazarini, and M. L. Rodrigues, “Acclimation of Myrtus communis to contrasting Mediterranean light environments—effects on structure and chemical composition of foliage and plant water relations,” Environmental and Experimental Botany, vol. 45, no. 2, pp. 165–178, 2001. View at Publisher · View at Google Scholar · View at Scopus
  46. L. Gratani, F. Covone, and W. Larcher, “Leaf plasticity in response to light of three evergreen species of the Mediterranean maquis,” Trees—Structure and Function, vol. 20, no. 5, pp. 549–558, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. J. Oleksyn, J. Modrzyński, M. G. Tjoelker, R. Zytkowiak, P. B. Reich, and P. Karolewski, “Growth and physiology of Picea abies populations from elevational transects: common garden evidence for altitudinal ecotypes and cold adaptation,” Functional Ecology, vol. 12, no. 4, pp. 573–590, 1998. View at Publisher · View at Google Scholar · View at Scopus
  48. L. Poorter, E. Lianes, M. Moreno-de las Heras, and M. A. Zavala, “Architecture of Iberian canopy tree species in relation to wood density, shade tolerance and climate,” Plant Ecology, vol. 213, no. 5, pp. 707–722, 2012. View at Publisher · View at Google Scholar · View at Scopus
  49. M. A. Zavala, J. M. Espelta, and J. Retana, “Constraints and trade-offs in Mediterranean plant communities: the case of holm oak-Aleppo pine forests,” Botanical Review, vol. 66, no. 1, pp. 119–149, 2000. View at Google Scholar · View at Scopus
  50. F. J. Baquedano, F. Valladares, and F. J. Castillo, “Phenotypic plasticity blurs ecotypic divergence in the response of Quercus coccifera and Pinus halepensis to water stress,” European Journal of Forest Research, vol. 127, no. 6, pp. 495–506, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. S. Palmroth, F. Berninger, E. Nikinmaa, J. Lloyd, P. Pulkkinen, and P. Hari, “Structural adaptation rather than water conservation was observed in Scots pine over a range of wet to dry climates,” Oecologia, vol. 121, no. 3, pp. 302–309, 1999. View at Publisher · View at Google Scholar · View at Scopus
  52. S. Nahum, M. Inbar, G. Ne'eman, and R. Ben-Shlomo, “Phenotypic plasticity and gene diversity in Pistacia lentiscus L. along environmental gradients in Israel,” Tree Genetics and Genomes, vol. 4, no. 4, pp. 777–785, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. S. E. Sultan, “An emerging focus on plant ecological development,” New Phytologist, vol. 166, no. 1, pp. 1–5, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. L. Gratani, R. Catoni, and L. Varone, “Morphological, anatomical and physiological leaf traits of Q. ilex, P. latifolia, P. lentiscus, and M. communis and their response to Mediterranean climate stress factors,” Botanical Studies, vol. 54, pp. 1–12, 2013. View at Google Scholar
  55. L. Gratani, E. Fiorentino, A. Kubova, and P. Marzi, “Effect of microclimate on ecophysiological features of some sclerophyllous species,” Photosynthetica, vol. 23, pp. 230–233, 1989. View at Google Scholar
  56. L. Balaguer, E. Martínez-Ferri, F. Valladares et al., “Population divergence in the plasticity of the response of Quercus coccifera to the light environment,” Functional Ecology, vol. 15, no. 1, pp. 124–135, 2001. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Bonito, L. Varone, and L. Gratani, “Relationship between acorn size and seedling morphological and physiological traits of Quercus ilex L. from different climates,” Photosynthetica, vol. 49, no. 1, pp. 75–86, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. P. Pesoli, L. Gratani, and W. Larcher, “Responses of Quercus ilex from different provenances to experimentally imposed water stress,” Biologia Plantarum, vol. 46, no. 4, pp. 577–581, 2003. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Barbero, R. Loisel, and P. Quézel, “Biogeography, ecology and history of Mediterranean Quercus ilex ecosystems,” Vegetatio, vol. 99-100, no. 1, pp. 19–34, 1992. View at Publisher · View at Google Scholar · View at Scopus
  60. J. Terradas and R. Savé, “The influence of summer and winter stress and water relationship on the distribution of Quercus ilex L.,” in Quercus ilex L. Ecosystems: Function, Dynamics and Management, F. Romane and J. Terradas, Eds., pp. 137–145, Kluwer Academic, Dodrecht, The Netherlands, 1992. View at Google Scholar
  61. H. Michaud, R. Lumaret, and F. Romane, “Variation in the genetic structure and reproductive biology of holm oak populations,” Vegetatio, vol. 99-100, no. 1, pp. 107–113, 1992. View at Publisher · View at Google Scholar · View at Scopus
  62. K. Hayashi, “Growth characteristics and silviculture in Quercus mongolica var. crispula Blume,” in Handbook for Hardwood, K. Sakaguchi, Ed., pp. 122–128, Association For Promotion of Forest Science, Tokyo, Japan, 1985. View at Google Scholar
  63. M. Higo, “Regeneration behaviors of tree species of secondary stands regenerated on sites disturbed by Typhoon 15: based on the proportion of advanced regeneration, growth rate, and seedling density in closed mature stands,” Journal of the Japanese Forestry Society, vol. 76, pp. 531–539, 1994. View at Google Scholar
  64. M.-L. Navas and E. Garnier, “Plasticity of whole plant and leaf traits in Rubia peregrina in response to light, nutrient and water availability,” Acta Oecologica, vol. 23, no. 6, pp. 375–383, 2002. View at Publisher · View at Google Scholar · View at Scopus
  65. L. Gratani, M. F. Crescente, V. D’amato, C. Ricotta, A. R. Frattaroli, and G. Puglielli, “Leaf traits variation in Sesleria nitida growing at different altitudes in the Central Apennines,” Photosynthetica. In press.
  66. P. M. S. Ashton and G. P. Berlyn, “Leaf adaptations of some Shorea species to sun and shade,” New Phytologist, vol. 121, no. 4, pp. 587–596, 1992. View at Google Scholar · View at Scopus
  67. R. J. N. Emery, D. M. Reid, and C. C. Chinnappa, “Phenotypic plasticity of stem elongation in two ecotypes of Stellaria longipes: the role of ethylene and response to wind,” Plant, Cell and Environment, vol. 17, no. 6, pp. 691–700, 1994. View at Google Scholar · View at Scopus
  68. M. A. Molina-Montenegro, J. Peñuelas, S. Munné-Bosch, and J. Sardans, “Higher plasticity in ecophysiological traits enhances the performance and invasion success of Taraxacum officinale (dandelion) in alpine environments,” Biological Invasions, vol. 14, no. 1, pp. 21–33, 2012. View at Publisher · View at Google Scholar · View at Scopus
  69. W. Larcher, Physiological Plant Ecology, Springer, Berlin, Germany, 4th edition, 2003.
  70. P. Doughty, “Testing the ecological correlates of phenotypically plastic traits within a phylogenetic framework,” Acta Oecologica, vol. 16, no. 4, pp. 519–524, 1995. View at Google Scholar · View at Scopus
  71. K. Gotthard and S. Nylin, “Adaptive plasticity and plasticity as an adaptation: a selective review of plasticity in animal morphology and life history,” Oikos, vol. 74, no. 1, pp. 3–17, 1995. View at Google Scholar · View at Scopus
  72. S. A. Cook and M. P. Johnson, “Adaptation to heterogeneous environments. I. Variation in heterophylly in Ranunculus flammula,” Evolution, vol. 22, pp. 496–516, 1968. View at Google Scholar
  73. T. O. Haugen and L. A. Vollestad, “Population differences in early life-history traits in grayling,” Journal of Evolutionary Biology, vol. 13, no. 6, pp. 897–905, 2000. View at Publisher · View at Google Scholar · View at Scopus
  74. C. K. Ghalambor and T. E. Martin, “Comparative manipulation of predation risk in incubating birds reveals variability in the plasticity of responses,” Behavioral Ecology, vol. 13, no. 1, pp. 101–108, 2002. View at Google Scholar · View at Scopus
  75. M. Pigliucci, C. J. Murren, and C. D. Schlichting, “Phenotypic plasticity and evolution by genetic assimilation,” Journal of Experimental Biology, vol. 209, no. 12, pp. 2362–2367, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. A. Weigelt and P. Jolliffe, “Indices of plant competition,” Journal of Ecology, vol. 91, no. 5, pp. 707–720, 2003. View at Publisher · View at Google Scholar · View at Scopus
  77. P. E. Hulme, “Phenotypic plasticity and plant invasions: is it all Jack?” Functional Ecology, vol. 22, no. 1, pp. 3–7, 2008. View at Publisher · View at Google Scholar · View at Scopus
  78. D. Sánchez-Gómez, F. Valladares, and M. A. Zavala, “Functional traits and plasticity in response to light in seedlings of four Iberian forest tree species,” Tree Physiology, vol. 26, no. 11, pp. 1425–1433, 2006. View at Google Scholar · View at Scopus
  79. H. Poorter, Ü. Niinemets, A. Walter, F. Fiorani, and U. Schurr, “A method to construct dose-response curves for a wide range of environmental factors and plant traits by means of a meta-analysis of phenotypic data,” Journal of Experimental Botany, vol. 61, no. 8, pp. 2043–2055, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. D. Kuiper and P. J. C. Kuiper, “Phenotypic plasticity in a physiological perspective,” Acta Oecologica Oecologia Plantarum, vol. 9, pp. 43–59, 1988. View at Google Scholar
  81. F. Valladares, L. Balaguer, E. Martinez-Ferri, E. Perez-Corona, and E. Manrique, “Plasticity, instability and canalization: Is the phenotypic variation in seedlings of sclerophyll oaks consistent with the environmental unpredictability of Mediterranean ecosystems?” New Phytologist, vol. 156, no. 3, pp. 457–467, 2002. View at Publisher · View at Google Scholar · View at Scopus
  82. Ü. Niinemets and F. Valladares, “Photosynthetic acclimation to simultaneous and interacting environmental stresses along natural light gradients: optimality and constraints,” Plant Biology, vol. 6, no. 3, pp. 254–268, 2004. View at Publisher · View at Google Scholar · View at Scopus
  83. M. Zunzunegui, F. Ain-Lhout, M. C. D. Barradas, L. Álvarez-Cansino, M. P. Esquivias, and F. García Novo, “Physiological, morphological and allocation plasticity of a semi-deciduous shrub,” Acta Oecologica, vol. 35, no. 3, pp. 370–379, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. F. S. Chapin III, K. Autumn, and F. Pugnaire, “Evolution of suites of traits in response to environmental stress,” American Naturalist, vol. 142, pp. S78–S92, 1993. View at Publisher · View at Google Scholar · View at Scopus
  85. F. Valladares, E. Martinez-Ferri, L. Balaguer, E. Perez-Corona, and E. Manrique, “Low leaf-level response to light and nutrients in Mediterranean evergreen oaks: a conservative resource-use strategy?” New Phytologist, vol. 148, no. 1, pp. 79–91, 2000. View at Publisher · View at Google Scholar · View at Scopus
  86. J. C. Crick and J. P. Grime, “Morphological plasticity and mineral nutrient capture in two herbaceous species of contrasted ecology,” New Phytologist, vol. 107, no. 2, pp. 403–414, 1987. View at Google Scholar · View at Scopus
  87. N. G. Dengler, “Comparative histological basis of sun and shade leaf dimorphism in Helianthus annuus,” Canadian Journal of Botany, vol. 58, pp. 717–730, 1980. View at Google Scholar
  88. J. H. McClendon and G. G. McMillen, “The control of leaf morphology and the tolerance of shade by woody plants,” Botanical Gazette, vol. 143, no. 1, pp. 79–83, 1982. View at Google Scholar · View at Scopus
  89. M. P. Dale and D. R. Causton, “The ecophysiology of Veronica chamaedrys, V. montana and V. officinalis. I. Light quality and light quantity,” Journal of Ecology, vol. 80, no. 3, pp. 483–492, 1992. View at Google Scholar · View at Scopus
  90. J. Květ, J. Svoboda, and K. Fiala, “Canopy development in stands of Typha latifolia L. and Phragmites communis Trin. in South Moravia,” Hidrobiologia, vol. 10, pp. 63–75, 1969. View at Google Scholar
  91. J. R. Evans, “Leaf anatomy enables more equal access to light and CO2 between chloroplasts,” New Phytologist, vol. 143, no. 1, pp. 93–104, 1999. View at Publisher · View at Google Scholar · View at Scopus
  92. R. B. Wylie, “Principles of foliar organization shown by sun-shade leaves from ten species of deciduous dicotyledonous trees,” American Journal of Botany, vol. 36, pp. 355–361, 1951. View at Google Scholar
  93. J. H. McClendon, “The relationship between the thickness of deciduous leaves and their maximum photosynthetic rate,” American Journal of Botany, vol. 49, pp. 320–322, 1962. View at Google Scholar
  94. H. K. Lichtenthaler, C. Buschmann, M. Döll et al., “Photosynthetic activity, chloroplast ultrastructure, and leaf characteristics of high-light and low-light plants and of sun and shade leaves,” Photosynthesis Research, vol. 2, no. 2, pp. 115–141, 1981. View at Publisher · View at Google Scholar · View at Scopus
  95. H. K. Lichtenthaler, G. Kuhn, U. Prenzel, and D. Meier, “Chlorophyll-protein levels and degree of thylakoid stacking in radish chloroplasts from high-light, low-light and bentazon-treated plants,” Physiologia Plantarum, vol. 56, no. 2, pp. 183–188, 1982. View at Google Scholar
  96. J. R. Evans, “Photosynthesis and nitrogen relationships in leaves of C3 plants,” Oecologia, vol. 78, no. 1, pp. 9–19, 1989. View at Publisher · View at Google Scholar · View at Scopus
  97. K. Hikosaka, “Nitrogen partitioning in the photosynthetic apparatus of Plantago asiatica leaves grown under different temperature and light conditions: similarities and differences between temperature and light acclimation,” Plant and Cell Physiology, vol. 46, no. 8, pp. 1283–1290, 2005. View at Publisher · View at Google Scholar · View at Scopus
  98. T. Hirose and M. J. A. Werger, “Maximizing daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy,” Oecologia, vol. 72, no. 4, pp. 520–526, 1987. View at Publisher · View at Google Scholar · View at Scopus
  99. K. Yoshimura, “Irradiance heterogeneity within crown affects photosynthetic capacity and nitrogen distribution of leaves in Cedrela sinensis,” Plant, Cell and Environment, vol. 33, no. 5, pp. 750–758, 2010. View at Publisher · View at Google Scholar · View at Scopus
  100. N. P. R. Anten, “Modelling canopy photosynthesis using parameters determined from simple non-destructive measurements,” Ecological Research, vol. 12, no. 1, pp. 77–88, 1997. View at Google Scholar · View at Scopus
  101. L. Sack, P. J. Melcher, W. H. Liu, E. Middleton, and T. Pardee, “How strong is intracanopy leaf plasticity in temperate deciduous trees?” American Journal of Botany, vol. 93, no. 6, pp. 829–839, 2006. View at Publisher · View at Google Scholar · View at Scopus
  102. Ü. Niinemets, “A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance,” Ecological Research, vol. 25, no. 4, pp. 693–714, 2010. View at Publisher · View at Google Scholar · View at Scopus
  103. H. P. Meister, M. M. Caldwell, J. D. Tenhunen, and O. L. Lange, “Ecological implications of sun/shade-leaf differentiation in sclerophyllous canopies: assessment by canopy modeling,” in Plant Response to Stress: Functional Analysis in Mediterranean Ecosystems, J. D. Tenhunen, F. M. Catarino, O. L. Lange, and W. C. Oechel, Eds., pp. 401–411, Springer, Heidelberg, Germany, 1987. View at Google Scholar
  104. Ü. Niinemets and O. Kull, “Stoichiometry of foliar carbon constituents varies along light gradients in temperate woody canopies: implications for foliage morphological plasticity,” Tree Physiology, vol. 18, no. 7, pp. 467–479, 1998. View at Google Scholar · View at Scopus
  105. F. Valladares, S. J. Wright, E. Lasso, K. Kitajima, and R. W. Pearcy, “Plastic phenotypic response to light of 16 congeneric shrubs from a panamanian rainforest,” Ecology, vol. 81, no. 7, pp. 1925–1936, 2000. View at Google Scholar · View at Scopus
  106. T. J. Givnish, “Adaptive significance of evergreen vs. deciduous leaves: solving the triple paradox,” Silva Fennica, vol. 36, no. 3, pp. 703–743, 2002. View at Google Scholar · View at Scopus
  107. L. Markesteijn, L. Poorter, and F. Bongers, “Light-dependent leaf trait variation in 43 tropical dry forest tree species,” American Journal of Botany, vol. 94, no. 4, pp. 515–525, 2007. View at Publisher · View at Google Scholar · View at Scopus
  108. T. P. Wyka, J. Oleksyn, R. Zytkowiak, P. Karolewski, A. M. Jagodziński, and P. B. Reich, “Responses of leaf structure and photosynthetic properties to intra-canopy light gradients: a common garden test with four broadleaf deciduous angiosperm and seven evergreen conifer tree species,” Oecologia, vol. 170, pp. 11–24, 2012. View at Publisher · View at Google Scholar · View at Scopus
  109. L. Gratani and I. Foti, “Estimating forest structure and shade tolerance of the species in a mixed deciduous broad-leaved forest in Abruzzo, Italy,” Annales Botanici Fennici, vol. 35, no. 2, pp. 75–83, 1998. View at Google Scholar · View at Scopus
  110. L. Gratani, “Canopy structure, vertical radiation profile and photosynthetic function in a Quercus ilex evergreen forest,” Photosynthetica, vol. 33, no. 1, pp. 139–149, 1997. View at Google Scholar · View at Scopus
  111. R. K. P. Yadav, A. M. Bosabalidis, and D. Vokou, “Leaf structural features of Mediterranean perennial species: plasticity and life form specificity,” Journal of Biological Research, vol. 2, pp. 21–34, 2004. View at Google Scholar
  112. F. Valladares and Ü. Niinemets, “Feature of complex nature and consequences,” Annual Review of Ecology, Evolution, and Systematics, vol. 39, pp. 237–257, 2008. View at Google Scholar
  113. S. B. Carpenter and N. D. Smith, “A comparative studies of leaf thickness among Southern Appalachian hardwoods,” Canadian Journal of Botany, vol. 59, pp. 1393–1396, 1981. View at Google Scholar
  114. S. Strauss-Debenedetti and F. A. Bazzaz, “Plasticity and acclimation to light in tropical Moraceae of different sucessional positions,” Oecologia, vol. 87, no. 3, pp. 377–387, 1991. View at Publisher · View at Google Scholar · View at Scopus
  115. C. C. Muth and F. A. Bazzaz, “Tree canopy displacement at forest gap edges,” Canadian Journal of Forest Research, vol. 32, no. 2, pp. 247–254, 2002. View at Publisher · View at Google Scholar · View at Scopus
  116. F. Longuetaud, A. Piboule, H. Wernsdörfer, and C. Collet, “Crown plasticity reduces inter-tree competition in a mixed broadleaved forest,” European Journal of Forest Research, vol. 132, pp. 621–634, 2013. View at Google Scholar
  117. M. H. Turnbull, “The effect of light quantity and quality during development on the photosynthetic characteristics of six Australian rainforest tree species,” Oecologia, vol. 87, no. 1, pp. 110–117, 1991. View at Publisher · View at Google Scholar · View at Scopus
  118. J. Popma, F. Bongers, and M. J. A. Werger, “Gap-dependence and leaf characteristics of trees in a tropical lowland rain forest in Mexico,” Oikos, vol. 63, no. 2, pp. 207–214, 1992. View at Google Scholar · View at Scopus
  119. F. Valladares, S. Arrieta, I. Aranda et al., “Shade tolerance, photoinhibition sensitivity and phenotypic plasticity of Ilex aquifolium in continental Mediterranean sites,” Tree Physiology, vol. 25, no. 8, pp. 1041–1052, 2005. View at Google Scholar · View at Scopus
  120. R. Catoni, L. Gratani, and L. Varone, “Physiological, morphological and anatomical trait variations between winter and summer leaves of Cistus species,” Flora: Morphology, Distribution, Functional Ecology of Plants, vol. 207, pp. 442–449, 2012. View at Publisher · View at Google Scholar · View at Scopus
  121. A. F. M. van Hees, “Growth and morphology of pedunculate oak (Quercus robur L) and beech (Fagus sylvatica L) seedlings in relation to shading and drought,” Annales des Sciences Forestieres, vol. 54, no. 1, pp. 9–18, 1997. View at Google Scholar · View at Scopus
  122. H. Ishii and S. Asano, “The role of crown architecture, leaf phenology and photosynthetic activity in promoting complementary use of light among coexisting species in temperate forests,” Ecological Research, vol. 25, no. 4, pp. 715–722, 2010. View at Publisher · View at Google Scholar · View at Scopus
  123. A. M. Barton, “Factors controlling plant distributions: drought, competition, and fire in montane pines in Arizona,” Ecological Monographs, vol. 63, no. 4, pp. 367–397, 1993. View at Google Scholar · View at Scopus
  124. J. Martínez-Vilalta and J. Piñol, “Drought-induced mortality and hydraulic architecture in pine populations of the NE Iberian Peninsula,” Forest Ecology and Management, vol. 161, no. 1–3, pp. 247–256, 2002. View at Publisher · View at Google Scholar · View at Scopus
  125. M. A. Zavala, J. M. Espelta, J. Caspersen, and J. Retana, “Interspecific differences in sapling performance with respect to light and aridity gradients in mediterranean pine-oak forests: implications for species coexistence,” Canadian Journal of Forest Research, vol. 41, no. 7, pp. 1432–1444, 2011. View at Publisher · View at Google Scholar · View at Scopus
  126. M. Kitao, T. T. Lei, T. Koike, H. Tobita, and Y. Maruyama, “Susceptibility to photoinhibition of three deciduous broadleaf tree species with different successional traits raised under various light regimes,” Plant, Cell and Environment, vol. 23, no. 1, pp. 81–89, 2000. View at Publisher · View at Google Scholar · View at Scopus
  127. S. S. Mulkey and R. W. Pearcy, “Interactions between acclimation and photoinhibition of photosynthesis of a tropical forest understory herb, Alocasia macrorrhiza, during simulated canopy gap formation,” Functional Ecology, vol. 6, pp. 719–729, 1992. View at Google Scholar
  128. C. B. Osmond, “What is photoinhibition? Some insights from comparison of shade and sun plants,” in Photoinhibition of Photosynthesis: from Molecular Mechanisms to the Field, N. R. Baker and J. R. Bowyer, Eds., pp. 1–24, BIOS Scientific Publishers, Lancaster, UK, 1994. View at Google Scholar
  129. T. Koike, M. Kitao, Y. Maruyama, S. Mori, and T. T. Lei, “Leaf morphology and photosynthetic adjustments among deciduous broad-leaved trees within the vertical canopy profile,” Tree Physiology, vol. 21, no. 12-13, pp. 951–958, 2001. View at Google Scholar · View at Scopus
  130. T. Koike, “Photosynthetic responses to light intensity of deciduous broad-leaved tree seedlings raised under various artificial shade,” Environmental Control in Biology, vol. 24, pp. 51–58, 1986. View at Google Scholar
  131. N. C. Vance and J. B. Zaerr, “Influence of drought stress and low irradiance on plant water relations and structural constituents in needles of Pinus ponderosa seedlings,” Tree Physiology, vol. 8, pp. 175–184, 1991. View at Google Scholar
  132. S. H. Janse-Ten Klooster, E. J. P. Thomas, and F. J. Sterck, “Explaining interspecific differences in sapling growth and shade tolerance in temperate forests,” Journal of Ecology, vol. 95, no. 6, pp. 1250–1260, 2007. View at Publisher · View at Google Scholar · View at Scopus
  133. T. J. Kawecki and D. Ebert, “Conceptual issues in local adaptation,” Ecology Letters, vol. 7, no. 12, pp. 1225–1241, 2004. View at Publisher · View at Google Scholar · View at Scopus
  134. O. Savolainen, T. Pyhäjärvi, and T. Knürr, “Gene flow and local adaptation in forest trees,” Annual Review of Ecology, Evolution, and Systematics, vol. 37, pp. 595–619, 2007. View at Google Scholar
  135. K. M. Hufford and S. J. Mazer, “Plant ecotypes: genetic differentiation in the age of ecological restoration,” Trends in Ecology and Evolution, vol. 18, no. 3, pp. 147–155, 2003. View at Publisher · View at Google Scholar · View at Scopus
  136. M. C. Grant and J. B. Mitton, “Genetic differentiation among growth forms of Engelmann spruce and subalpine fir at tree line,” Arctic Antarctic and Alpine Research, vol. 9, pp. 259–263, 1977. View at Google Scholar
  137. J. B. Mitton, Y. B. Linhart, J. L. Hamrick, and J. S. Beckman, “Observations on the genetic structure and mating system of ponderosa pine in the Colorado front range,” Theoretical and Applied Genetics, vol. 51, no. 1, pp. 5–13, 1977. View at Publisher · View at Google Scholar · View at Scopus
  138. C. K. Kelly, M. W. Chase, A. de Bruijn, M. F. Fay, and F. I. Woodward, “Temperature-based population segregation in birch,” Ecology Letters, vol. 6, no. 2, pp. 87–89, 2003. View at Publisher · View at Google Scholar · View at Scopus
  139. B. C. Bongarten and R. O. Teskey, “Water relations of loblolly pine seedlings from diverse geographic origins,” Tree Physiology, vol. 1, pp. 265–276, 1986. View at Google Scholar
  140. R. Y. Soolanayakanahally, R. D. Guy, S. N. Silim, E. C. Drewes, and W. R. Schroeder, “Enhanced assimilation rate and water use efficiency with latitude through increased photosynthetic capacity and internal conductance in balsam poplar (Populus balsamifera L.),” Plant, Cell and Environment, vol. 32, no. 12, pp. 1821–1832, 2009. View at Publisher · View at Google Scholar · View at Scopus
  141. J. A. Ramírez-Valiente, F. Valladares, L. Gil, and I. Aranda, “Population differences in juvenile survival under increasing drought are mediated by seed size in cork oak (Quercus suber L.),” Forest Ecology and Management, vol. 257, no. 8, pp. 1676–1683, 2009. View at Publisher · View at Google Scholar · View at Scopus
  142. L. Gratani and M. Amadori, “Post-fire resprouting of shrubby species in Mediterranean maquis,” Vegetatio, vol. 96, no. 2, pp. 137–143, 1991. View at Publisher · View at Google Scholar · View at Scopus
  143. W. Larcher, C. Kainmüller, and J. Wagner, “Survival types of high mountain plants under extreme temperatures,” Flora: Morphology, Distribution, Functional Ecology of Plants, vol. 205, no. 1, pp. 3–18, 2010. View at Publisher · View at Google Scholar · View at Scopus
  144. D. Nogués-Bravo, M. B. Araújo, M. P. Errea, and J. P. Martínez-Rica, “Exposure of global mountain systems to climate warming during the 21st Century,” Global Environmental Change, vol. 17, no. 3-4, pp. 420–428, 2007. View at Publisher · View at Google Scholar · View at Scopus
  145. W. Thuiller, S. Lavorel, M. B. Araújo, M. T. Sykes, and I. C. Prentice, “Climate change threats to plant diversity in Europe,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 23, pp. 8245–8250, 2005. View at Publisher · View at Google Scholar · View at Scopus
  146. R. Engler, C. F. Randin, W. Thuiller et al., “21st century climate change threatens mountain flora unequally across Europe,” Global Change Biology, vol. 17, no. 7, pp. 2330–2341, 2011. View at Publisher · View at Google Scholar · View at Scopus
  147. T. Dirnböck, F. Essl, and W. Rabitsch, “Disproportional risk for habitat loss of high-altitude endemic species under climate change,” Global Change Biology, vol. 17, no. 2, pp. 990–996, 2011. View at Publisher · View at Google Scholar · View at Scopus
  148. O. Savolainen, F. Bokma, R. García-Gil, P. Komulainen, and T. Repo, “Genetic variation in cessation of growth and frost hardiness and consequences for adaptation of Pinus sylvestris to climatic changes,” Forest Ecology and Management, vol. 197, no. 1–3, pp. 79–89, 2004. View at Publisher · View at Google Scholar · View at Scopus
  149. A. S. Jump and J. Peñuelas, “Running to stand still: adaptation and the response of plants to rapid climate change,” Ecology Letters, vol. 8, no. 9, pp. 1010–1020, 2005. View at Publisher · View at Google Scholar · View at Scopus
  150. H. Pauli, M. Gottfried, and G. Grabherr, “Effect of climate change on the alpine and nival vegetation of the Alps,” Journal of Mountain Ecology, vol. 7, pp. 9–12, 2003. View at Google Scholar
  151. M. Lindner, M. Maroschek, S. Netherer et al., “Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems,” Forest Ecology and Management, vol. 259, no. 4, pp. 698–709, 2010. View at Publisher · View at Google Scholar · View at Scopus
  152. J. F. Scheepens, E. S. Frei, and J. Stöcklin, “Genotypic and environmental variation in specific leaf area in a widespread Alpine plant after transplantation to different altitudes,” Oecologia, vol. 164, no. 1, pp. 141–150, 2010. View at Publisher · View at Google Scholar · View at Scopus
  153. A. M. Davidson, M. Jennions, and A. B. Nicotra, “Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis,” Ecology Letters, vol. 14, no. 4, pp. 419–431, 2011. View at Publisher · View at Google Scholar · View at Scopus
  154. S. L. Chown, S. Slabber, M. A. McGeoch, C. Janion, and H. P. Leinaas, “Phenotypic plasticity mediates climate change responses among invasive and indigenous arthropods,” Proceedings of the Royal Society B: Biological Sciences, vol. 274, no. 1625, pp. 2531–2537, 2007. View at Publisher · View at Google Scholar · View at Scopus
  155. J. S. Dukes, “Tomorrow's plant communities: different, but how?” New Phytologist, vol. 176, no. 2, pp. 235–237, 2007. View at Publisher · View at Google Scholar · View at Scopus
  156. S. C. H. Barrett and B. J. Richardson, “Genetic attributes of invading species,” in Ecology of Biological Invasions, R. H. Groves and J. J. Burdon, Eds., pp. 21–33, 1986. View at Google Scholar
  157. J. Antonovics, “The nature of limits to natural selection,” Annals of the Missouri Botanical Garden, vol. 63, pp. 224–247, 1976. View at Google Scholar
  158. S. C. H. Barrett, “Genetic variation in weeds,” in Biological Control of Weeds with Plant Pathogens, R. Charudattan and H. Walker, Eds., pp. 73–98, John Wiley & Sons, New York, NY, USA, 1982. View at Google Scholar
  159. K. J. Rice and R. N. Mack, “Ecological genetics of Bromus tectorum—II. Intraspecific variation in phenotypic plasticity,” Oecologia, vol. 88, no. 1, pp. 84–90, 1991. View at Publisher · View at Google Scholar · View at Scopus
  160. R. J. Abbott, “Plant invasions, interspecific hybridization and the evolution of new plant taxa,” Trends in Ecology and Evolution, vol. 7, no. 12, pp. 401–405, 1992. View at Google Scholar · View at Scopus
  161. D. G. Williams and R. A. Black, “Phenotypic variation in contrasting temperature environments: growth and photosynthesis in Pennisetum setaceum from different altitudes on Hawaii,” Functional Ecology, vol. 7, no. 5, pp. 623–633, 1993. View at Google Scholar · View at Scopus
  162. L. Z. Durand and G. Goldstein, “Photo-synthesis, photoinhibition, and nitrogen use efficiency in native and invasive tree ferns in Hawaii,” Oecologia, vol. 126, no. 3, pp. 345–354, 2001. View at Publisher · View at Google Scholar · View at Scopus
  163. D. G. Williams, R. N. Mack, and R. A. Black, “Ecophysiology of introduced Pennisetum setaceum on Hawaii: the role of phenotypic plasticity,” Ecology, vol. 76, no. 5, pp. 1569–1580, 1995. View at Google Scholar · View at Scopus
  164. O. K. Atkin, B. R. Loveys, L. J. Atkinson, and T. L. Pons, “Phenotypic plasticity and growth temperature: understanding interspecific variability,” in Meeting on Phenotypic Plasticity and the Changing Environment Held at the Society for Experimental Biology Plant Frontiers Meeting, pp. 267–281, Sheffield, UK, 2005.
  165. P. J. Yeh and T. D. Price, “Adaptive phenotypic plasticity and the successful colonization of a novel environment,” American Naturalist, vol. 164, no. 4, pp. 531–542, 2004. View at Publisher · View at Google Scholar · View at Scopus
  166. J. L. Funk, “Differences in plasticity between invasive and native plants from a low resource environment,” Journal of Ecology, vol. 96, no. 6, pp. 1162–1173, 2008. View at Publisher · View at Google Scholar · View at Scopus
  167. S. Lavergne and J. Molofsky, “Increased genetic variation and evolutionary potential drive the success of an invasive grass,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 10, pp. 3883–3888, 2007. View at Publisher · View at Google Scholar · View at Scopus
  168. R. E. Drenovsky, B. J. Grewell, C. M. D’Antonio et al., “A functional trait perspective on plant invasions,” Annals of Botany, vol. 110, pp. 141–153, 2012. View at Google Scholar
  169. O. Godoy, A. Saldana, N. Fuentes, F. Valladares, and E. Gianoli, “Forests are not immune to plant invasions: phenotypic plasticity and local adaptation allow Prunella vulgaris to colonize a temperate evergreen rainforest,” Biological Invasions, vol. 13, no. 7, pp. 1615–1625, 2011. View at Publisher · View at Google Scholar · View at Scopus
  170. S. J. DeWalt, J. S. Denslow, and J. L. Hamrick, “Biomass allocation, growth, and photosynthesis of genotypes from native and introduced ranges of the tropical shrub Clidemia hirta,” Oecologia, vol. 138, no. 4, pp. 521–531, 2004. View at Publisher · View at Google Scholar · View at Scopus
  171. P. Poot and H. Lambers, “Shallow-soil endemics: adaptive advantages and constraints of a specialized root-system morphology,” New Phytologist, vol. 178, no. 2, pp. 371–381, 2008. View at Publisher · View at Google Scholar · View at Scopus
  172. G.-R. Walther, E. Post, P. Convey et al., “Ecological responses to recent climate change,” Nature, vol. 416, no. 6879, pp. 389–395, 2002. View at Publisher · View at Google Scholar · View at Scopus
  173. A. Menzel, T. H. Sparks, N. Estrella et al., “European phenological response to climate change matches the warming pattern,” Global Change Biology, vol. 12, pp. 1–8, 2006. View at Google Scholar
  174. Y. Vitasse, C. C. Bresson, A. Kremer, R. Michalet, and S. Delzon, “Quantifying phenological plasticity to temperature in two temperate tree species,” Functional Ecology, vol. 24, no. 6, pp. 1211–1218, 2010. View at Publisher · View at Google Scholar · View at Scopus
  175. M. Desponts and J. P. Simon, “Structure et variabilité génétique de populations d'épinettes noires (Picea mariana (Mill.) B.S.P.) dans la zone hémiarctique du Nouveau- Quèbec,” Canadian Journal of Forest Research, vol. 17, pp. 1006–1012, 1987. View at Google Scholar
  176. F. Villani, S. Benedettelli, M. Paciucci, M. Cherubini, and M. Pigliucci, “Genetic variation and differentiation between natural populations or chestnust (Castanea sativa Mill.) from Italy,” in Biochemical Markers in the Population Genetics of Forest Trees, H. H. Hattemer, S. Fineschi, F. Cannata, and M. E. Malvolti, Eds., pp. 91–103, SPB Acadamic, The Hague, The Netherlands, 1991. View at Google Scholar
  177. S. Richter, T. Kipfer, T. Wohlgemuth, C. C. Guerrero, J. Ghazoul, and B. Moser, “Phenotypic plasticity facilitates resistance to climate change in a highly variable environment,” Oecologia, vol. 169, no. 1, pp. 269–279, 2012. View at Publisher · View at Google Scholar · View at Scopus
  178. A. B. Nicotra, O. K. Atkin, S. P. Bonser et al., “Plant phenotypic plasticity in a changing climate,” Trends in Plant Science, vol. 15, no. 12, pp. 684–692, 2010. View at Publisher · View at Google Scholar · View at Scopus
  179. I. K. Dawson, A. Lengkeek, J. C. Weber, and R. Jamnadass, “Managing genetic variation in tropical trees: Linking knowledge with action in agroforestry ecosystems for improved conservation and enhanced livelihoods,” Biodiversity and Conservation, vol. 18, no. 4, pp. 969–986, 2009. View at Publisher · View at Google Scholar · View at Scopus
  180. J. R. Etterson and R. G. Shaw, “Constraint to adaptive evolution in response to global warming,” Science, vol. 294, no. 5540, pp. 151–154, 2001. View at Publisher · View at Google Scholar · View at Scopus
  181. S. M. Scheiner, “The genetics of phenotypic plasticity. VII. Evolution in a spatially-structured environment,” Journal of Evolutionary Biology, vol. 11, no. 3, pp. 303–320, 1998. View at Publisher · View at Google Scholar · View at Scopus
  182. G. G. Simpson, “The Baldwin effect,” Evolution, vol. 7, pp. 110–117, 1953. View at Google Scholar
  183. M. Pigliucci and C. J. Murren, “Genetic assimilation and a possible evolutionary paradox: can macroevolution sometimes be so fast as to pass us by?” Evolution, vol. 57, no. 7, pp. 1455–1464, 2003. View at Google Scholar · View at Scopus
  184. C. Wellstein, S. Chelli, G. Campetella et al., “Intraspecific phenotypic variability of plant functional traits in contrasting mountain grassland habitats,” Biodiversity and Conservation, vol. 22, pp. 2353–2374, 2013. View at Google Scholar