Table of Contents Author Guidelines Submit a Manuscript
Advances in Chemistry
Volume 2014, Article ID 143567, 7 pages
http://dx.doi.org/10.1155/2014/143567
Research Article

Selenium (Se) Regulates Seedling Growth in Wheat under Drought Stress

1Department of Crop Physiology, University of Agriculture, Faisalabad 38040, Pakistan
2Nuclear Institute for Agriculture and Biology (NIAB), P.O. Box No. 128, Faisalabad, Pakistan

Received 19 April 2014; Revised 6 July 2014; Accepted 9 July 2014; Published 22 July 2014

Academic Editor: Wen-Chi Hou

Copyright © 2014 Fahim Nawaz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. M. Chaves and M. M. Oliveira, “Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture,” Journal of Experimental Botany, vol. 55, no. 407, pp. 2365–2384, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. J. J. Zhang, G. P. Hao, Z. Y. Wu et al., “Nucleotide variation in ATHK1 region of Arabidopsis thaliana and its association study with drought tolerance,” African Journal of Biotechnology, vol. 7, no. 3, pp. 224–233, 2008. View at Google Scholar · View at Scopus
  3. F. Nawaz, R. Ahmad, E. A. Waraich, M. S. Naeem, and R. N. Shabbir, “Nutrient uptake, physiological responses, and yield attributes of wheat (Triticum aestivum l.) exposed to early and late drought stress,” Journal of Plant Nutrition, vol. 35, no. 6, pp. 961–974, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. C. M. Ashraf and S. Abu-Shakra, “Wheat seed germination under low temperature and moisture stress,” Agron Journal, vol. 70, pp. 135–139, 1978. View at Google Scholar
  5. X. Tian and Y. Lei, “Nitric oxide treatment alleviates drought stress in wheat seedlings,” Biologia Plantarum, vol. 50, no. 4, pp. 775–778, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. F. Zhao, F. J. Lopez-Bellido, C. W. Gray, W. R. Whalley, L. J. Clark, and S. P. McGrath, “Effects of soil compaction and irrigation on the concentrations of selenium and arsenic in wheat grains,” Science of the Total Environment, vol. 372, no. 2-3, pp. 433–439, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. B. Hanson, G. F. Garifullina, S. D. Lindblom et al., “Selenium accumulation protects Brassica juncea from invertebrate herbivory and fungal infection,” New Phytologist, vol. 159, no. 2, pp. 461–469, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Seppänen, M. Turakainen, and H. Hartikainen, “Selenium effects on oxidative stress in potato,” Plant Science, vol. 165, no. 2, pp. 311–319, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Kumar, A. J. Bijo, R. S. Baghel, C. R. K. Reddy, and B. Jha, “Selenium and spermine alleviate cadmium induced toxicity in the red seaweed Gracilaria dura by regulating antioxidants and DNA methylation,” Plant Physiology and Biochemistry, vol. 51, pp. 129–138, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. X. Yao, J. Chu, and C. Ba, “Antioxidant responses of wheat seedlings to exogenous selenium supply under enhanced ultraviolet-B,” Biological Trace Element Research, vol. 136, no. 1, pp. 96–105, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. X. Q. Yao, J. Z. Chu, and C. J. Ba, “Responses of wheat roots to exogenous selenium supply under enhanced ultraviolet-B,” Biological Trace Element Research, vol. 137, no. 2, pp. 244–252, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Wang, “Water-stress mitigation by selenium in Trifolium repens L.,” Journal of Plant Nutrition and Soil Science, vol. 174, no. 2, pp. 276–282, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Hasanuzzaman, M. A. Hossain, and M. Fujita, “Selenium-induced up-regulation of the antioxidant defense and methylglyoxal detoxification system reduces salinity-induced damage in rapeseed seedlings,” Biological Trace Element Research, vol. 143, no. 3, pp. 1704–1721, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Chu, X. Yao, and Z. Zhang, “Responses of wheat seedlings to exogenous selenium supply under cold stress,” Biological Trace Element Research, vol. 136, no. 3, pp. 355–363, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Djanaguiraman, P. V. V. Prasad, and M. Seppanen, “Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system,” Plant Physiology and Biochemistry, vol. 48, no. 12, pp. 999–1007, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Hartikainen, T. Xue, and V. Piironen, “Selenium as an anti-oxidant and pro-oxidant in ryegrass,” Plant and Soil, vol. 225, no. 1-2, pp. 193–200, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Pukacka, E. Ratajczak, and E. Kalemba, “The protective role of selenium in recalcitrant Acer saccharium L. seeds subjected to desiccation,” Journal of Plant Physiology, vol. 168, no. 3, pp. 220–225, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. V. V. Kuznetsov, V. P. Kholodova, V. I. V. Kuznetsov, and B. A. Yagodin, “Selenium regulates the water status of plants exposed to drought,” Doklady Biological Sciences, vol. 390, pp. 266–268, 2003. View at Google Scholar
  19. F. Nawaz, M. Y. Ashraf, R. Ahmad, and E. A. Waraich, “Selenium (Se) seed priming induced growth and biochemical changes in wheat under water deficit conditions,” Biological Trace Element Research, vol. 151, no. 2, pp. 284–293, 2013. View at Publisher · View at Google Scholar · View at Scopus
  20. X. Yao, J. Chu, and G. Wang, “Effects of selenium on wheat seedlings under drought stress,” Biological Trace Element Research, vol. 130, no. 3, pp. 283–290, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Hasanuzzaman and M. Fujita, “Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings,” Biological Trace Element Research, vol. 143, no. 3, pp. 1758–1776, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Bittman, W. T. Buckley, K. Zaychuk, and E. A. P. Brown, “Seed coating for enhancing the level of selenium in crops,” USA Patent No. 6,058, 649, 2000.
  23. L. D. Temmerman, N. Waegeneers, C. Thiry, G. D. Laing, F. Tack, and A. Ruttens, “Selenium content of Belgian cultivated soils and its uptake by field crops and vegetables,” Science of the Total Environment, vol. 468–469, pp. 77–82, 2013. View at Google Scholar
  24. P. F. Boldrin, V. Faquin, S. J. Ramos, K. V. F. Boldrin, F. W. Ávila, and L. R. G. Guilherme, “Soil and foliar application of selenium in rice biofortification,” Journal of Food Composition and Analysis, vol. 31, pp. 238–244, 2013. View at Google Scholar
  25. Y. Wang, X. Wang, and Y. Wong, “Generation of selenium-enriched rice with enhanced grain yield, selenium content and bioavailability through fertilisation with selenite,” Food Chemistry, vol. 141, no. 3, pp. 2385–2393, 2013. View at Publisher · View at Google Scholar · View at Scopus
  26. A. D. C. Chilimba, S. D. Young, C. R. Black, M. C. Meacham, J. Lammel, and M. R. Broadley, “Agronomic biofortification of maize with selenium (Se) in Malawi,” Field Crops Research, vol. 125, pp. 118–128, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Yan, F. Wang, H. Qin et al., “Natural Variation in Grain Selenium Concentration of Wild Barley, Hordeum spontaneum, Populations from Israel,” Biological Trace Element Research, vol. 142, no. 3, pp. 773–786, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. F. Yang, L. Chen, Q. Hu, and G. Pan, “Effect of the application of selenium on selenium content of soybean and its products,” Biological Trace Element Research, vol. 93, no. 1–3, pp. 249–256, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. E. Kápolna, K. H. Laursen, S. Husted, and E. H. Larsen, “Bio-fortification and isotopic labelling of Se metabolites in onions and carrots following foliar application of Se and 77Se,” Food Chemistry, vol. 133, no. 3, pp. 650–657, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. E. Kápolna, P. R. Hillestrøm, K. H. Laursen, S. Husted, and E. H. Larsen, “Effect of foliar application of selenium on its uptake and speciation in carrot,” Food Chemistry, vol. 115, no. 4, pp. 1357–1363, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. K. R. Hladun, D. R. Parker, K. D. Tran, and J. T. Trumble, “Effects of selenium accumulation on phytotoxicity, herbivory, and pollination ecology in radish (Raphanus sativus L.),” Environmental Pollution, vol. 172, pp. 70–75, 2013. View at Publisher · View at Google Scholar · View at Scopus
  32. P. Põldma, T. Tõnutare, A. Viitak, A. Luik, and U. Moor, “Effect of selenium treatment on mineral nutrition, bulb size, and antioxidant properties of garlic (Allium sativum L.),” Journal of Agricultural and Food Chemistry, vol. 59, no. 10, pp. 5498–5503, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Curtin, R. Hanson, T. N. Lindley, and R. C. Butler, “Selenium concentration in wheat (Triticum aestivum) grain as influenced by method, rate, and timing of sodium selenate application,” New Zealand Journal of Crop and Horticultural Science, vol. 34, no. 4, pp. 329–339, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. N. Terry, A. M. Zayed, M. P. de Souza, and A. S. Tarun, “Selenium in higher plants,” Annual Review of Plant Physiology and Plant Molecular Biology, vol. 51, pp. 401–432, 2000. View at Publisher · View at Google Scholar · View at Scopus
  35. R. L. Mikkelsen, A. L. Page, and F.T. Bingham, “Factors affecting selenium accumulation by agricultural crops,” in Selenium in Agriculture and the Environment, L. W. Jacobs, Ed., SSSA Special Publication Number 23, pp. 65–94, Soil Science Society of America, Madison, Wis, USA, 1989. View at Google Scholar
  36. A. Kabata-Pendias and H. Pendias, Trace Elements in Soils and Plants, CRC Press, Boca Raton, Fla, USA, 2nd edition, 1992.
  37. C. Kahakachchi, H. T. Boakye, P. C. Uden, and J. F. Tyson, “Chromatographic speciation of anionic and neutral selenium compounds in Se-accumulating Brassica juncea (Indian mustard) and in selenized yeast,” Journal of Chromatography A, vol. 1054, no. 1-2, pp. 303–312, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Zayed, C. M. Lytle, and N. Terry, “Accumulation and volatilization of different chemical species of selenium by plants,” Planta, vol. 206, no. 2, pp. 284–292, 1998. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Y. Ashraf, F. Hussain, J. Akhter, A. Gul, M. Ross, and G. Ebert, “Effect of different sources and rates of nitrogen and supra optimal level of potassium fertilization on growth, yield and nutrient uptake by sugarcane grown under saline conditions,” Pakistan Journal of Botany, vol. 40, no. 4, pp. 1521–1531, 2008. View at Google Scholar · View at Scopus
  40. F. Nawaz, Wheat response to exogenous selenium supply under drought stress [Ph.D. dissertation], University of Agriculture, Faisalabad, Pakistan, 2014.
  41. A. Latif and M. M. Iqbal, “Fertigation techniques,” in Proceedings of the Workshop on Technologies for Sustainable Agriculture (NIAB '01), pp. 155–159, Faisalabad, Pakistan, 2001.
  42. M. Djanaguiraman, D. D. Devi, A. K. Shanker, J. A. Sheeba, and U. Bangarusamy, “Selenium—an antioxidative protectant in soybean during senescence,” Plant and Soil, vol. 272, no. 1-2, pp. 77–86, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. K. L. Larson, “Drought injury and resistance of crop plants,” in Physiological Aspects of Dry Land Farming, S. U. Gupta, Ed., pp. 147–162, Oxford & IBH Publishing, New Delhi, India, 1992. View at Google Scholar
  44. H. Hartikainen, “Biogeochemistry of selenium and its impact on food chain quality and human health,” Journal of Trace Elements in Medicine and Biology, vol. 18, no. 4, pp. 309–318, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. P. Smrkolj, M. Osvald, J. Osvald, and V. Stibilj, “Selenium uptake and species distribution in selenium-enriched bean (Phaseolus vulgaris L.) seeds obtained by two different cultivations,” European Food Research and Technology, vol. 225, no. 2, pp. 233–237, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. B. Z. Bai, J. Z. Jin, S. Bai, and L. P. Huang, “Improvement of TTC method determining root activity in corn,” Maize Science, vol. 2, pp. 44–47, 1994 (Chinese). View at Google Scholar
  47. C. L. Carlson, D. I. Kaplan, and D. C. Adriano, “Effects of selenium on germination and radicle elongation of selected agronomic species,” Environmental and Experimental Botany, vol. 29, no. 4, pp. 493–498, 1989. View at Publisher · View at Google Scholar · View at Scopus
  48. S. A. Valadabadi, A. H. Shiranirad, and H. A. Farahani, “Ecophysiological influences of zeolite and selenium on water deficit stress tolerance in different rapeseed cultivars,” Journal of Ecology and the Natural Environment, vol. 2, pp. 154–159, 2010. View at Google Scholar
  49. G. Okçu, M. D. Kaya, and M. Atak, “Effects of salt and drought stresses on germination and seedling growth of pea (Pisum sativum L.),” Turkish Journal of Agriculture and Forestry, vol. 29, no. 4, pp. 237–242, 2005. View at Google Scholar · View at Scopus
  50. M. Yaǧmur and D. Kaydan, “Alleviation of osmotic stress of water and salt in germination and seedling growth of triticale with seed priming treatments,” African Journal of Biotechnology, vol. 7, no. 13, pp. 2156–2162, 2008. View at Google Scholar · View at Scopus
  51. J. L. Hopper and D. R. Parker, “Plant availability of selenite and selenate as influenced by the competing ions phosphate and sulfate,” Plant and Soil, vol. 210, no. 2, pp. 199–207, 1999. View at Publisher · View at Google Scholar · View at Scopus
  52. P. Ximénez-Embún, I. Alonso, Y. Madrid-Albarran, and C. Camara, “Establishment of selenium uptake and species distribution in lupine, Indian mustard, and sunflower plants,” Journal of Agricultural and Food Chemistry, vol. 52, pp. 832–838, 2004. View at Google Scholar
  53. M. Łabanowska, M. Filek, J. Kościelniak, M. Kurdziel, E. Kuliś, and H. Hartikainen, “The effects of short-term selenium stress on Polish and Finnish wheat seedlings-EPR, enzymatic and fluorescence studies,” Journal of Plant Physiology, vol. 169, no. 3, pp. 275–284, 2012. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Vítová, K. Bišová, M. Hlavová, V. Zachleder, M. Rucki, and M. Cížková, “Glutathione peroxidase activity in the selenium-treated alga Scenedesmus quadricauda,” Aquatic Toxicology, vol. 102, no. 1-2, pp. 87–94, 2011. View at Publisher · View at Google Scholar
  55. Y. Wang, X. Wang, and Y. Wong, “Proteomics analysis reveals multiple regulatory mechanisms in response to selenium in rice,” Journal of Proteomics, vol. 75, no. 6, pp. 1849–1866, 2012. View at Publisher · View at Google Scholar · View at Scopus
  56. T. Xue, H. Hartikainen, and V. Piironen, “Antioxidative and growth-promoting effect of selenium on senescing lettuce,” Plant and Soil, vol. 237, no. 1, pp. 55–61, 2001. View at Publisher · View at Google Scholar · View at Scopus
  57. Q. Hu, G. Pan, and J. Zhu, “Effect of selenium on green tea preservation quality and amino acid composition of tea protein,” Journal of Horticultural Science and Biotechnology, vol. 76, no. 3, pp. 344–346, 2001. View at Google Scholar · View at Scopus
  58. M. Turakainen, H. Hartikainen, and M. M. Seppänen, “Effects of selenium treatments on potato (Solanum tuberosum L.) growth and concentrations of soluble sugars and starch,” Journal of Agricultural and Food Chemistry, vol. 52, no. 17, pp. 5378–5382, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Germ, “The response of two potato cultivars on combined effects of selenium and drought,” Acta Agriculturae Slovenica, vol. 91, no. 1, pp. 121–137, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. G. Habibi, “Effect of drought stress and selenium spraying on photosynthesis and antioxidant activity of spring barley,” Acta Agriculturae Slovenica, vol. 101, no. 1, pp. 31–39, 2013. View at Publisher · View at Google Scholar · View at Scopus
  61. P. Wójcik, “Uptake of mineral nutrients from foliar fertilization,” Journal of Fruit and Ornamental Plant Research, vol. 12, pp. 201–218, 2004. View at Google Scholar
  62. H. Marschner, Mineral Nutrition of Higher Plants, Academic Press, London, UK, 1995.