Table of Contents Author Guidelines Submit a Manuscript
Advances in Chemistry
Volume 2014, Article ID 147398, 10 pages
http://dx.doi.org/10.1155/2014/147398
Research Article

Study of Swelling Properties and Thermal Behavior of Poly(N,N-Dimethylacrylamide-co-Maleic Acid) Based Hydrogels

Laboratory of Polymer Materials, Faculty of Chemistry, University of Sciences and Technology Houari Boumediene, BP 32, El Alia, 16111 Algiers, Algeria

Received 9 April 2014; Revised 30 June 2014; Accepted 2 July 2014; Published 22 July 2014

Academic Editor: Alejandro Sosnik

Copyright © 2014 Sadjia Bennour and Fatma Louzri. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. S. Hoffman, “Hydrogels for biomedical applications,” Advanced Drug Delivery Reviews, vol. 54, no. 1, pp. 3–12, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. O. Wichterle and D. Lím, “Hydrophilic gels for biological use,” Nature, vol. 185, no. 4706, pp. 117–118, 1960. View at Publisher · View at Google Scholar · View at Scopus
  3. D. M. García, J. L. Escobar, Y. Noa, N. Bada, E. Hernáez, and I. Katime, “Timolol maleate release from pH-sensible poly(2-hydroxyethyl methacrylate-co-methacrylic acid) hydrogels,” European Polymer Journal, vol. 40, no. 8, pp. 1683–1690, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Şen, Ö. Kantoğlu, and O. Güven, “The effect of external stimuli on the equilibrium swelling properties of poly(N-vinyl 2-pyrrolidone/itaconic acid) poly-electrolyte hydrogels,” Polymer, vol. 40, no. 4, pp. 913–917, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. C. S. Brazel and N. A. Peppas, “Synthesis and characterization of thermo- and chemomechanically responsive poly(N-isopropylacrylamide-co-methacrylic acid) hydrogels,” Macromolecules, vol. 28, no. 24, pp. 8016–8020, 1995. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Yıldız, B. Işık, and M. Kış, “Synthesis of thermoresponsive N-isopropolylacrylamide-N-hydroxymethylacrylamide hydrogels by redox polymerization,” Polymer, vol. 42, no. 6, pp. 2521–2529, 2001. View at Publisher · View at Google Scholar
  7. B. Singh, N. Sharma, and N. Chauhan, “Synthesis, characterization and swelling studies of pH responsive psyllium and methacrylamide based hydrogels for the use in colon specific drug delivery,” Carbohydrate Polymers, vol. 69, no. 4, pp. 631–643, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. S. P. Zhao, M. J. Cao, L. Y. Li, and W. L. Xu, “Synthesis and properties of biodegradable thermo- and pH-sensitive poly[(N-isopropylacrylamide)-co-(methacrylic acid)] hydrogels,” Polymer Degradation and Stability, vol. 95, no. 5, pp. 719–724, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Wang, S. Z. Fu, Y. C. Gu et al., “Synthesis and characterization of biodegradable pH-sensitive hydrogels based on poly(ε-caprolactone), methacrylic acid, and poly(ethylene glycol),” Polymer Degradation and Stability, vol. 94, no. 4, pp. 730–737, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Çaykara and M. Doǧmuş, “The effect of solvent composition on swelling and shrinking properties of poly(acrylamide-co-itaconic acid) hydrogels,” European Polymer Journal, vol. 40, no. 11, pp. 2605–2609, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Luo, K. Zhang, Q. Wei, Z. Liu, and Y. Chen, “Poly(MAA-co-AN) hydrogels with improved mechanical properties for theophylline controlled delivery,” Acta Biomaterialia, vol. 5, no. 1, pp. 316–327, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. S. K. Bajpai and S. Dubey, “In vitro dissolution studies for release of vitamin B12 from poly(N-vinyl-2-pyrrolidone-co-acrylic acid) hydrogels,” Reactive and Functional Polymers, vol. 62, no. 1, pp. 93–104, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. B. Singh, N. Chauhan, and S. Kumar, “Radiation crosslinked psyllium and polyacrylic acid based hydrogels for use in colon specific drug delivery,” Carbohydrate Polymers, vol. 73, no. 3, pp. 446–455, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Huang, H. Yu, and C. Xiao, “pH-sensitive cationic guar gum/poly (acrylic acid) polyelectrolyte hydrogels: swelling and in vitro drug release,” Carbohydrate Polymers, vol. 69, no. 4, pp. 774–783, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Ma, D. Yang, Q. Li et al., “Injectable hydrogels based on chitosan derivative/polyethylene glycol dimethacrylate/N,N-dimethylacrylamide as bone tissue engineering matrix,” Carbohydrate Polymers, vol. 79, no. 3, pp. 620–627, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Kopeček, “Hydrogel biomaterials: a smart future?” Biomaterials, vol. 28, no. 34, pp. 5185–5192, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Sen and O. Güven, “Dynamic deswelling studies of poly(N-vinyl-2-pyrrolidone/itaconic acid) hydrogels swollen in water and terbinafine hydrochloride solutions,” European Polymer Journal, vol. 38, no. 4, pp. 751–757, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Vashist, Y. K. Gupta, and S. Ahmad, “Interpenetrating biopolymer network based hydrogels for an effective drug delivery system,” Carbohydrate Polymers, vol. 87, no. 2, pp. 1433–1439, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. B. Singh, G. S. Chauhan, S. Kumar, and N. Chauhan, “Synthesis, characterization and swelling responses of pH sensitive psyllium and polyacrylamide based hydrogels for the use in drug delivery (I),” Carbohydrate Polymers, vol. 67, no. 2, pp. 190–200, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Kondo, N. Nakashima, H. Hado, and K. Tsuoa, “Poly(N,N-dimethylamide-co-styrene)s as a highly efficient catalysts for two-phase reactions,” Journal of Polymer Science A: Polymer Chemistry, vol. 28, no. 8, pp. 2229–2232, 1990. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Valdebenito and M. V. Encinas, “Effect of solvent on the free radical polymerization of N,N-dimethylacrylamide,” Polymer International, vol. 59, no. 9, pp. 1246–1251, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. W. L. F. Santos, M. F. Porto, E. C. Muniz, L. Olenka, M. L. Baessso, and A. C. Bento, “Poly(ethylene terephtalate) films modified with N, N-dimethylacrylamide: incorporation of disperse dye,” Journal of Applied Polymer Science, vol. 77, pp. 269–282, 2000. View at Google Scholar
  23. Alexeev, Analyse Qualitative, 4th edition, 1980.
  24. E. Karadaǧ and D. Saraydin, “Swelling of superabsorbent acrylamide/sodium acrylate hydrogels prepared using multifunctional crosslinkers,” Turkish Journal of Chemistry, vol. 26, no. 6, pp. 863–875, 2002. View at Google Scholar · View at Scopus
  25. E. Karadaǧ, Ö. B. Üzüm, and D. Saraydin, “Swelling equilibria and dye adsorption studies of chemically crosslinked superabsorbent acrylamide/maleic acid hydrogels,” European Polymer Journal, vol. 38, no. 11, pp. 2133–2141, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. B. Yildiz, B. Işik, and M. Kiş, “Synthesis and characterization of thermoresponsive isopropolylacrylamide acrylamide hydrogels,” European Polymer Journal, vol. 38, pp. 1343–1347, 2002. View at Google Scholar
  27. R. C. Weast, Handbook of Chemistry and Physics, The Chemical Rubber, Cleveland, Ohio, USA, 53rd edition, 1972.
  28. J. Zhang, L. Y. Chu, Y. K. Li, and Y. M. Lee, “Dual thermo- and pH-sensitive poly(N-isopropylacrylamide-co-acrylic acid) hydrogels with rapid response behaviors,” Polymer, vol. 48, no. 6, pp. 1718–1728, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Şen and A. Yakar, “Controlled release of antifungal drug terbinafine hydrochloride from poly(N-vinyl 2-pyrrolidone/itaconic acid) hydrogels,” International Journal of Pharmaceutics, vol. 228, no. 1-2, pp. 33–41, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Jin, M. Liu, F. Zhang, S. Chen, and A. Niu, “Synthesis and characterization of pH-sensitivity semi-IPN hydrogel based on hydrogen bond between poly(N-vinylpyrrolidone) and poly(acrylic acid),” Polymer, vol. 47, no. 5, pp. 1526–1532, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. B. Taşdelen, N. Kayaman-Apohan, O. Güven, and B. M. Baysal, “Preparation of poly(N-isopropylacrylamide/itaconic acid) copolymeric hydrogels and their drug release behavior,” International Journal of Pharmaceutics, vol. 278, no. 2, pp. 343–351, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. P. L. Ritger and N. A. Peppas, “A simple equation for desciption of solute release I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs,” Journal of Controlled Release, vol. 5, no. 1, pp. 23–36, 1987. View at Publisher · View at Google Scholar · View at Scopus
  33. P. L. Ritger and N. A. Peppas, “A simple equation for description of solute release I. Fickian and Non- Fickian release from swellable devices,” Journal of Controlled Release, vol. 5, no. 1, pp. 37–42, 1987. View at Google Scholar · View at Scopus
  34. M. Świtała-Zeliazkow, “Thermal degradation of copolymers of styrene with dicarboxylic acids—II: copolymers obtained by radical copolymerisation of styrene with maleic acid or fumaric acid,” Polymer Degradation and Stability, vol. 91, no. 6, pp. 1233–1239, 2006. View at Publisher · View at Google Scholar · View at Scopus