Table of Contents Author Guidelines Submit a Manuscript
Advances in Chemistry
Volume 2014, Article ID 506851, 12 pages
http://dx.doi.org/10.1155/2014/506851
Research Article

Cobalt(II) and Manganese(II) Complexes of Novel Schiff Bases, Synthesis, Charcterization, and Thermal, Antimicrobial, Electronic, and Catalytic Features

Chemistry Department, Faculty of Arts and Science, Kahramanmaras Sutcu Imam University, Avsar Kampusu, 46100 Kahramanmaras, Turkey

Received 6 June 2014; Accepted 28 July 2014; Published 21 August 2014

Academic Editor: Alessandro D’Annibale

Copyright © 2014 Selma Bal and Sedat Salih Bal. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Rudolph, K. L. Reddy, J. P. Chiang, and B. K. Sharpless, “Highly efficient epoxidation of olefins using aqueous H2O2 and catalytic methyltrioxorhenium/pyridine: pyridine-mediated ligand acceleration,” Journal of the American Chemical Society, vol. 119, no. 26, pp. 6189–6190, 1997. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Sato, M. Aoki, M. Ogawa, T. Hashimoto, and R. Noyori, “A practical method for epoxidation of terminal olefins with 30% hydrogen peroxide under halide-free conditions,” Journal of Organic Chemistry, vol. 61, no. 23, pp. 8310–8311, 1996. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Venturello and R. DAloisio, “Quaternary ammonium tetrakis(diperoxotungsto)phosphates(3-) as a new class of catalysts for efficient alkene epoxidation with hydrogen peroxide,” Journal of Organic Chemistry, vol. 53, pp. 1553–1557, 1988. View at Publisher · View at Google Scholar
  4. C. Coperet, H. Adolfson, and K. B. Sharpless, “A simple and efficient method for epoxidation of terminalalkenes,” Chemical Communications, no. 16, pp. 1565–1566, 1997. View at Publisher · View at Google Scholar
  5. D. E. de Vos, B. F. Sels, M. Reynaers, Y. V. Subba Rao, and P. A. Jacobs, “Epoxidation of terminal or electron-deficient olefins with H2O2, catalysed by Mn-trimethyltriazacyclonane complexes in the presence of an oxalate buffer,” Tetrahedron Letters, vol. 39, no. 20, pp. 3221–3224, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. F. Heshmatpour, S. Rayati, M. Afghan Hajiabbas, P. Abdolalian, and B. Neumüller, “Copper(II) Schiff base complexes derived from 2,2′-dimethyl- propandiamine: Synthesis, characterization and catalytic performance in the oxidation of styrene and cyclooctene,” Polyhedron, vol. 31, no. 1, pp. 443–450, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. W. Zeng, J. Li, and S. Qin, “The effect of aza crown ring bearing salicylaldimine Schiff bases Mn(III) complexes as catalysts in the presence of molecular oxygen on the catalytic oxidation of styrene,” Inorganic Chemistry Communications, vol. 9, pp. 10–12, 2006. View at Publisher · View at Google Scholar
  8. Y. Yang, Y. Zhang, S. Hao et al., “Heterogenization of functionalized Cu(II) and VO(IV) Schiff base complexes by direct immobilization onto amino-modified SBA-15: styrene oxidation catalysts with enhanced reactivity,” Applied Catalysis A: General, vol. 381, pp. 274–281, 2010. View at Publisher · View at Google Scholar
  9. G. Romanowski and J. Kira, “Oxidovanadium(V) complexes with chiral tridentate Schiff bases derived from R(-)-phenylglycinol: synthesis, spectroscopic characterization and catalytic activity in the oxidation of sulfides and styrene,” Polyhedron, vol. 53, pp. 172–178, 2013. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Silva, C. Freire, B. de Castro, and J. L. Figueiredo, “Styrene oxidation by manganese Schiff base complexes in zeolite structures,” Journal of Molecular Catalysis A: Chemical, vol. 258, no. 1-2, pp. 327–333, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Rayati and F. Ashouri, “Pronounced catalytic activity of oxo-vanadium(IV) Schiff base complexes in the oxidation of cyclooctene and styrene by tert-butyl hydroperoxide,” Comptes Rendus Chimie, vol. 15, no. 8, pp. 679–687, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Rayati, S. Zakavi, M. Koliaei, A. Wojtczak, and A. Kozakiewicz, “Electron-rich salen-type Schiff base complexes of Cu(II) as catalysts for oxidation of cyclooctene and styrene with tert-butylhydroperoxide: a comparison with electron-deficient ones,” Inorganic Chemistry Communications, vol. 13, no. 1, pp. 203–207, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Yang, J. Guan, P. Qiu, and Q. Kan, “Enhanced catalytic performances by surface silylation of Cu(II) Schiff base-containing SBA-15 in epoxidation of styrene with H2O2,” Applied Surface Science, vol. 256, no. 10, pp. 3346–3351, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Romanowski, “Synthesis, characterization and catalytic activity in the oxidation of sulfides and styrene of vanadium(V) complexes with tridentate Schiff base ligands,” Journal of Molecular Catalysis A: Chemical, vol. 368-369, pp. 137–144, 2013. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Mukherjee, S. Samanta, B. C. Roy, and A. Bhaumik, “Efficient allylic oxidation of cyclohexene catalyzed by immobilized Schiff base complex using peroxides as oxidants,” Applied Catalysis A: General, vol. 301, no. 1, pp. 79–88, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Chang, Y. Lv, F. Lu, F. Zha, and Z. Lei, “Efficient allylic oxidation of cyclohexene with oxygen catalyzed by chloromethylated polystyrene supported tridentate Schiff-base complexes,” Journal of Molecular Catalysis A: Chemical, vol. 320, no. 1-2, pp. 56–61, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Salavati-Niasari and H. Babazadeh-Arani, “Cyclohexene oxidation with tert-butylhydroperoxide and hydrogen peroxide catalyzed by new square-planar manganese(II), cobalt(II), nickel(II) and copper(II) bis(2-mercaptoanil)benzil complexes supported on alumina,” Journal of Molecular Catalysis A: Chemical, vol. 274, no. 1-2, pp. 58–64, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Salavati-Niasari, P. Salemi, and F. Davar, “Oxidation of cyclohexene with tert-butylhydroperoxide and hydrogen peroxide catalysted by Cu(II), Ni(II), Co(II) and Mn(II) complexes of N,N′-bis-(α-methylsalicylidene)-2,2-dimethylpropane-1,3-diamine, supported on alumina,” Journal of Molecular Catalysis A: Chemical, vol. 238, no. 1-2, pp. 215–222, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Salavati-Niasari, M. Hassani-Kabutarkhani, and F. Davar, “Alumina-supported Mn(II), Co(II), Ni(II) and Cu(II) N,N-bis(salicylidene)-2,2-dimethylpropane-1,3-diamine complexes: synthesis, characterization and catalytic oxidation of cyclohexene with tert-butylhydroperoxide and hydrogen peroxide,” Catalysis Communications, vol. 7, pp. 955–962, 2006. View at Publisher · View at Google Scholar
  20. D. Chatterjee, S. Mukherjee, and A. Mitra, “Epoxidation of olefins with sodium hypochloride catalysed by new Nickel_II/Schiff base complexes,” Journal of Molecular Catalysis A, vol. 154, pp. 5–8, 2000. View at Google Scholar
  21. I. Cârlescu, G. Lisa, and D. Scutaru, “Thermal stability of some ferrocene containing schiff bases,” Journal of Thermal Analysis and Calorimetry, vol. 91, no. 2, pp. 535–540, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. D. Apreutesei, G. Lisa, N. Hurduc, and D. Scutaru, “Thermal behavior of some cholesteric esters,” Journal of Thermal Analysis and Calorimetry, vol. 83, no. 2, pp. 335–340, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Tümer, D. Ekinci, F. Tümer, and A. Bulut, “Synthesis, characterization and properties of some divalent metal(II) complexes: their electrochemical, catalytic, thermal and antimicrobial activity studies,” Spectrochimica Acta A, vol. 67, no. 3-4, pp. 916–929, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. G. Ceyhan, C. Celik, S. Urus, I. Demirtas, M. Elmastas, and M. Tumer, “Antioxidant, electrochemical, thermal, antimicrobial and alkane oxidation properties of tridentate Schiff base ligands and their metal complexes,” Spectrochimica Acta Part A, vol. 81, pp. 184–198, 2011. View at Google Scholar
  25. M. Aslantas, E. Kendi, N. Demir, A. E. Sabik, M. Tumer, and M. Kertmen, “Synthesis, spectroscopic, structural characterization, electrochemical and antimicrobial activity studies of the Schiff base ligand and its transition metal complexes,” Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy, vol. 74, no. 3, pp. 617–624, 2009. View at Publisher · View at Google Scholar
  26. M. Shebl, “Synthesis, spectroscopic characterization and antimicrobial activity of binuclear metal complexes of a new asymmetrical Schiff base ligand: DNA binding affinity of copper(II) complexes,” Spectrochimica Acta, vol. 117, pp. 127–137, 2014. View at Publisher · View at Google Scholar · View at Scopus
  27. Y.-T. Liu, G.-D. Lian, D.-W. Yin, and B.-J. Su, “Synthesis, characterization and biological activity of ferrocene-based Schiff base ligands and their metal (II) complexes,” Spectrochimica Acta A, vol. 100, pp. 131–137, 2013. View at Publisher · View at Google Scholar · View at Scopus
  28. T. A. Yousef, G. M. Abu El-Reash, O. A. El-Gammal, and R. A. Bedier, “Synthesis, characterization, optical band gap, in vitro antimicrobial activity and DNA cleavage studies of some metal complexes of pyridyl thiosemicarbazone,” Journal of Molecular Structure, vol. 1035, pp. 307–317, 2013. View at Publisher · View at Google Scholar · View at Scopus
  29. D. Guo, P. Wu, H. Tan, L. Xia, and W. Zhou, “Synthesis and luminescence properties of novel 4-(N-carbazole methyl) benzoyl hydrazone Schiff bases,” Journal of Luminescence, vol. 131, no. 7, pp. 1272–1276, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. R. Tang, W. Zang, Y. Luo, and J. Li, “Synthesis, fluorescence properties of Eu(III) complexes with novel carbazole functionalized β-diketone ligand,” Journal of Rare Earths, vol. 27, no. 3, pp. 362–367, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Zhao, X. Liu, W. Feng, X. Lü, W. Wong, and W. Wong, “Effective enhancement of near-infrared emission by carbazole modification in the Zn-Nd bimetallic Schiff-base complexes,” Inorganic Chemistry Communications, vol. 20, pp. 41–45, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. L. Yang, W. Zhu, M. Fang, Q. Zhang, and C. Li, “A new carbazole-based Schiff-base as fluorescent chemosensor for selective detection of Fe3+ and Cu2+,” Spectrochimica Acta A, vol. 109, pp. 186–192, 2013. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Liu and J.-S. Miao, “Blue electroluminescence of a novel Zn2+-β-diketone complex with a carbazole moiety,” Chinese Chemical Letters, vol. 25, no. 1, pp. 69–72, 2014. View at Publisher · View at Google Scholar
  34. B. Ruan, Y. Tian, H. Zhou et al., “Synthesis, characterization and in vitro antitumor activity of three organotin(IV) complexes with carbazole ligand,” Inorganica Chimica Acta, vol. 365, no. 1, pp. 302–308, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. F. B. Koyuncu, S. Koyuncu, and E. Ozdemir, “A novel donor-acceptor polymeric electrochromic material containing carbazole and 1,8-naphtalimide as subunit,” Electrochimica Acta, vol. 55, no. 17, pp. 4935–4941, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Koyuncu, B. Gultekin, C. Zafer et al., “Electrochemical and optical properties of biphenyl bridged-dicarbazole oligomer films: electropolymerization and electrochromism,” Electrochimica Acta, vol. 54, no. 24, pp. 5694–5702, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Koyuncu, C. Zafer, E. Sefer et al., “A new conducting polymer of 2,5-bis(2-thienyl)-1H-(pyrrole) (SNS) containing carbazole subunit: electrochemical, optical and electrochromic properties,” Synthetic Metals, vol. 159, no. 19-20, pp. 2013–2021, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Liu and M. Liu, “Langmuir-Blodgett film and acidichromism of a long chain carbazole-containing Schiff base,” Thin Solid Films, vol. 415, no. 1-2, pp. 248–252, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Grigoras and N. Antonoaia, “Synthesis and characterization of some carbazole-based imine polymers,” European Polymer Journal, vol. 41, no. 5, pp. 1079–1089, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. K. R. Yoon, S. Ko, S. M. Lee, and H. Lee, “Synthesis and characterization of carbazole derived nonlinear optical dyes,” Dyes and Pigments, vol. 75, no. 3, pp. 567–573, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. NCCLS, Performance Standards for Antimicrobial Susceptibility Testing, M100-S9, International Supplement, Villanova, Pa, USA, 9th edition, 1999.
  42. NCCLS, Performance Standarts for Antimicrobial Disks Susceptibilty Tests, Approved Standart M2-A8, NCCLS, Wayne, Pa, USA, 8th edition, 2003.
  43. C. H. Collins, P. M. Lyne, and J. M. Grange, Microbiological Methods, Butterworths, London, UK, 1989.
  44. L. J. Bradshaw, Laboratory Microbiology, Saundes College Publishing, Fort Worth, Tex, USA, 4th edition, 1992.
  45. M. Tümer, C. Çelik, H. Köksal, and S. Serin, “Transition metal complexes of bidentate Schiff base ligands,” Transition Metal Chemistry, vol. 24, pp. 525–532, 1999. View at Google Scholar
  46. E. Ispir, “The synthesis, characterization, electrochemical character, catalytic and antimicrobial activity of novel, azo-containing Schiff bases and their metal complexes,” Dyes and Pigments, vol. 82, no. 1, pp. 13–19, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Tümer, N. Deligönül, A. Gölcü et al., “Mixed-ligand copper(II) complexes: investigation of their spectroscopic, catalysis, antimicrobial and potentiometric properties,” Transition Metal Chemistry, vol. 31, pp. 1–12, 2006. View at Publisher · View at Google Scholar
  48. L. P. Nitha, R. Aswathy, N. E. Mathews, B. S. Kumari, and K. Mohanan, “Synthesis, spectroscopic characterisation, DNA cleavage, superoxidase dismutase activity and antibacterial properties of some transition metal complexes of a novel bidentate Schiff base derived from isatin and 2-aminopyrimidine,” Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy, vol. 118, pp. 154–161, 2014. View at Publisher · View at Google Scholar
  49. N. K. Singh and S. B. Singh, “Complexes of 1-isonicotinoyl-4-benzoyl-3-thiosemicarbazide with manganese(II), iron(III), chromium(III), cobalt(II), nickel(II), copper(II) and zinc(II),” Transition Metal Chemistry, vol. 26, no. 4-5, pp. 487–495, 2001. View at Publisher · View at Google Scholar · View at Scopus
  50. H. P. Ebrahimi, J. S. Hadi, Z. A. Abdulnabi, and Z. Bolandnazar, “Spectroscopic, thermal analysis and DFT computational studies of salen-type Schiff base complexes,” Spectrochim Acta A, vol. 117, pp. 485–492, 2014. View at Publisher · View at Google Scholar
  51. V. Mirkhani, M. Moghadam, S. Tangestaninejad, I. Mohammadpoor-Baltork, and N. Rasouli, “Catalytic oxidation of olefins with hydrogen peroxide catalyzed by [Fe(III)(salen)Cl] complex covalently linked to polyoxometalate,” Inorganic Chemistry Communications, vol. 10, no. 12, pp. 1537–1540, 2007. View at Publisher · View at Google Scholar · View at Scopus