Table of Contents Author Guidelines Submit a Manuscript
Advances in Chemistry
Volume 2014, Article ID 549019, 5 pages
http://dx.doi.org/10.1155/2014/549019
Research Article

Appraisal on Textured Grain Growth and Photoconductivity of ZnO Thin Film SILAR

1Research and Development Centre, Bharathiar University, Coimbatore 641046, India
2Department of Physics, St.Thomas College, Pala, Kottayam 686574, India

Received 26 April 2014; Revised 24 June 2014; Accepted 3 July 2014; Published 13 July 2014

Academic Editor: Salah S. Massoud

Copyright © 2014 Deepu Thomas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Xiangdong, L. Xiaomin, and Y. Weidong, “Preparation and characterization of highly oriented ZnO film by ultrasonic assisted SILAR method,” Journal Wuhan University of Technology, Materials Science Edition, vol. 20, no. 3, pp. 23–26, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Zhou, A. V. Rogachev, Z. Liu, D. G. Piliptsou, H. Ji, and X. Jiang, “Effects of oxygen/argon ratio and annealing on structural and optical properties of ZnO thin films,” Applied Surface Science, vol. 258, no. 15, pp. 5759–5764, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. V. Shelke, B. K. Sonawane, M. P. Bhole, and D. S. Patil, “Electrical and optical properties of transparent conducting tin doped ZnO thin films,” Journal of Materials Science: Materials in Electronics, vol. 23, no. 2, pp. 451–456, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Yen, D. Strome, S. J. Kim, A. N. Cartwright, and W. A. Anderson, “Annealing studies on zinc oxide thin films deposited by magnetron sputtering,” Journal of Electronic Materials, vol. 37, no. 5, pp. 764–769, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. J. H. Park, J. M. Shin, S. Cha et al., “Deposition-temperature effects on AZO thin films prepared by RF magnetron sputtering and their physical properties,” Journal of the Korean Physical Society, vol. 49, no. 2, pp. S584–S588, 2006. View at Google Scholar · View at Scopus
  6. R. Chandramohan, V. Dhanasekaran, S. Ezhilvizhian et al., “Spectral properties of aluminium doped zinc oxide thin films prepared by SILAR method,” Journal of Materials Science: Materials in Electronics, vol. 23, no. 2, pp. 390–397, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Son, J. Shim, and N. Cho, “Variations in electrical and physical properties of Al:ZnO films with preparation conditions,” Metals and Materials International, vol. 17, no. 1, pp. 99–104, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. P. P. Murmu, J. Kennedy, B. J. Ruck et al., “Effect of annealing on the structural, electrical and magnetic properties of Gd-implanted ZnO thin films,” Journal of Materials Science, vol. 47, no. 3, pp. 1119–1126, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Zhu, J. Hüpkes, E. Bunte, A. Gerber, and S. M. Huang, “Influence of working pressure on ZnO:Al films from tube targets for silicon thin film solar cells,” Thin Solid Films, vol. 518, no. 17, pp. 4997–5002, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. W. Luo, T. Tsai, J. Yang, W. Hsieh, C. Hsu, and J. Fang, “Enhancement in conductivity and transmittance of zinc oxide prepared by chemical bath deposition,” Journal of Electronic Materials, vol. 38, no. 11, pp. 2264–2269, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Kokubun, H. Kimura, and S. Nakagomi, “Preparation of ZnO thin films on sapphire substrates by sol-gel method,” Japanese Journal of Applied, vol. 42, part 2, no. 8A, p. 904, 2003. View at Google Scholar
  12. Y. Lee, H. Kim, and Y. Roh, “Deposition of ZnO thin films by the ultrasonic spray pyrolysis technique,” Japanese Journal of Applied Physics, vol. 40, no. 4, part 1, pp. 2423–2428, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. H. M. Pathan and C. D. Lokhande, “Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method,” Bulletin of Materials Science, vol. 27, no. 2, pp. 85–111, 2004. View at Google Scholar · View at Scopus
  14. B. R. Sankapal, R. S. Mane, and C. D. Lokhande, “Preparation and characterization of Sb2S3 thin films using a successive ionic layer adsorption and reaction (SILAR) method,” Journal of Materials Science Letters, vol. 18, no. 18, pp. 1453–1455, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Saleem, L. Fang, A. Wakeel, M. Rashad, and C. Y. Kong, “Simple preparation and characterization of nano-crystalline Zinc Oxide thin films by sol-gel method on glass substrate,” World Journal of Condensed Matter Physics, vol. 2, no. 6, pp. 10–15, 2012. View at Publisher · View at Google Scholar
  16. M. H. Huang, S. Mao, H. Feick et al., “Room-temperature ultraviolet nanowire nanolasers,” Science, vol. 292, no. 5523, pp. 1897–1899, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. S. John, S. Marpu, J. Li et al., “Hybrid zinc oxide nanoparticles for biophotonics,” Journal of Nanoscience and Nanotechnology, vol. 10, no. 3, pp. 1707–1712, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Janotti and C. G. Van de Walle, “Fundamentals of zinc oxide as a semiconductor,” Reports on Progress in Physics, vol. 72, no. 12, Article ID 126501, 2009. View at Publisher · View at Google Scholar