Table of Contents Author Guidelines Submit a Manuscript
Advances in Chemistry
Volume 2014, Article ID 628326, 6 pages
http://dx.doi.org/10.1155/2014/628326
Research Article

A Simple and Advantageous Synthesis of the Privileged 1,4-Benzodiazepine Nucleus

Department of Chemistry, Banasthali University, Banasthali, Rajasthan 304022, India

Received 30 April 2014; Revised 5 July 2014; Accepted 11 July 2014; Published 11 August 2014

Academic Editor: Hideto Miyabe

Copyright © 2014 Neetu Jain and Dharma Kishore. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. A. Koch, A. Schuffenhauer, M. Scheck et al., “Charting biologically relevant chemical space: a structural classification of natural products (SCONP),” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 48, pp. 17272–17277, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. W. Nawroca, B. Sztuba, A. Opolski, J. Wietrzk, M. W. Kowalska, and T. Glowiak, “Synthesis and antiproliferative activity in vitro of novel 1,5-benzodiazepines. Part II,” Archive der Pharmazie-Pharmaceutical and Medicinal Chemistry, vol. 334, no. 1, pp. 3–10, 2000. View at Google Scholar
  3. B. E. Evans, K. E. Rittle, M. G. Bock et al., “Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagonists,” Journal of Medicinal Chemistry, vol. 31, no. 12, pp. 2235–2246, 1988. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Yarchoan, H. Mitsuya, R. V. Thomas et al., “In vivo activity against HIV and favorable toxicity profile of 2′,3′-dideoxyinosine,” Science, vol. 245, no. 4916, pp. 412–415, 1989. View at Google Scholar
  5. J. R. Lokensgard, C. C. Chao, G. Gekker, S. Hu, and P. K. Peterson, “Benzodiazepines, glia, and HIV-1 neuropathogenesis,” Molecular Neurobiology, vol. 18, no. 1, pp. 23–33, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Poupaert, P. Carato, E. Colacino, and S. Yous, “2(3H)-benzoxazolone and bioisosters as “privileged scaffold” in the design of pharmacological probes,” Current Medicinal Chemistry, vol. 12, no. 7, pp. 877–885, 2005. View at Publisher · View at Google Scholar
  7. D. J. Triggle, “1,4-dihydropyridines as calcium channel ligands and privileged structures,” Cellular and Molecular Neurobiology, vol. 23, no. 3, pp. 293–303, 2003. View at Publisher · View at Google Scholar
  8. R. W. DeSimone, K. S. Currie, S. A. Mitchell, J. W. Darrow, and D. A. Pippin, “Privileged structures: applications in drug discovery,” Combinatorial Chemistry and High Throughput Screening, vol. 7, no. 5, pp. 473–493, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. A. A. Patchett and R. P. Nargund, “Chapter 26. Privileged structures: an update,” Annual Reports in Medicinal Chemistry, vol. 35, pp. 289–298, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Yang, Q. Dang, J. Liu, Z. Wei, J. Wu, and X. Bai, “Preparation of a fully substituted purine library,” Journal of Combinatorial Chemistry, vol. 7, no. 3, pp. 474–482, 2005. View at Publisher · View at Google Scholar
  11. J. Liu, Q. Dang, Z. Wei, H. Zhang, and X. Bai, “Parallel solution-phase synthesis of a 2,6,8,9-tetrasubstituted purine library via a sulfur intermediate,” Journal of Combinatorial Chemistry, vol. 7, no. 4, pp. 627–636, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. Q. Dang and J. E. Gomez-Galeno, “An efficient synthesis of pyrrolo[2,3-d]pyrimidines via inverse electron demand Diels-Alder reactions of 2-amino-4-cyanopyrroles with 1,3,5-triazines,” Journal of Organic Chemistry, vol. 67, no. 24, pp. 8703–8705, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Bhuyan, R. C. Boruah, and J. S. Sandhu, “Studies on uracils. 10. A facile one-pot synthesis of pyrido[2,3-d]- and pyrazolo[3,4-d]pyrimidines,” Journal of Organic Chemistry, vol. 55, no. 2, pp. 568–571, 1990. View at Publisher · View at Google Scholar · View at Scopus
  14. R. H. Smith Jr., W. L. Jorgen, J. Tirado-Rives et al., “Prediction of binding affinities for TIBO inhibitors of HIV-1 reverse transcriptase using Monte Carlo simulations in a linear response method,” Journal of Medicinal Chemistry, vol. 41, no. 26, pp. 5272–5286, 1998. View at Publisher · View at Google Scholar
  15. B. A. Roberte, K. Andries, J. Desayter et al., “Potent and selective inhibition of HIV-1 replication in vitro by a novel series of TIBO derivatives,” Nature, vol. 343, no. 6257, pp. 470–474, 1990. View at Publisher · View at Google Scholar
  16. H. J. Breslin, M. J. Kukla, T. Kromis et al., “Synthesis and anti-HIV activity of 1,3,4,5-tetrahydro-2H-1,4- benzodiazepin-2-one (TBO) derivatives. Truncated 4,5,6,7-tetrahydro-5- methylimidazo[4,5,1-jk][1,4]benzodiazepin-2(1H)-ones (TIBO) analogues,” Bioorganic and Medicinal Chemistry, vol. 7, no. 11, pp. 2427–2436, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. W. Ho, M. J. Kukla, H. J. Breslin et al., “Synthesis and anti-HIV-1 activity of 4,5,6,7-tetrahydro-5-methylimidazo-[4,5,1-jk][1,4]benzodiazepin-2(1H)-one (TIBO) derivatives. 4,” Journal of Medicinal Chemistry, vol. 38, no. 5, pp. 794–802, 1995. View at Publisher · View at Google Scholar · View at Scopus
  18. B. D. Puodziunaite, R. Janciene, L. Kosychova, and Z. Stumbreviciute, “On the synthetic way to novel peri-annelated imidazo[1,5]benzodiazepinones as the potent non-nucleoside reverse transcriptase inhibitors,” Arkivoc, vol. 2000, no. 4, pp. 512–522, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. M. D. Braccio, G. Grossi, G. Roma, L. Vargiu, M. Mura, and M. E. Marongiu, “1,5-Benzodiazepines. Part XII. Synthesis and biological evaluation of tricyclic and tetracyclic 1,5-benzodiazepine derivatives as nevirapine analogues,” European Journal of Medicinal Chemistry, vol. 36, no. 11-12, pp. 935–949, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Kamal, M. V. Rao, N. Laxman, G. Ramesh, and G. S. Reddy, “Recent developments in the design, synthesis and structure-activity relationship studies of pyrrolo[2,1-c][1,4]benzodiazepines as DNA-interactive antitumour antibiotics,” Current Medicinal Chemistry—Anti-Cancer Agents, vol. 2, no. 2, pp. 215–254, 2002. View at Publisher · View at Google Scholar
  21. P. Sharma, B. Vashistha, R. Tygai et al., “Application of microwave induced Delepine reaction to the facile one pot synthesis of 7-substituted 1,3-dihydro-2H-[1,4]-benzodiazepin-2-one-5-methyl carboxylates from the corresponding 1-chloroacetylisatins,” International Journal of Chemical Sciences, vol. 8, no. 1, 2010. View at Google Scholar
  22. A. Singh, R. Sirohi, S. Shastri, and D. Kishore, “A facile one-pot synthesis of 7-substituted-5-methoxycarbonyl-1H-2, 3-dihydro-1, 4-benzodiazepin-2-ones from 5-substituted-N-chloroacetyl isatins,” Indian Journal of Chemistry B, vol. 42B, no. 12, pp. 3124–3127, 2003. View at Google Scholar · View at Scopus
  23. P. D. Popp, “The chemistry of isatin,” in Advances in Heterocyclic Chemistry, vol. 18, pp. 1–58, 1975. View at Publisher · View at Google Scholar
  24. M. Pal, N. K. Sharma, Priyanka, and K. K. Jha, “Synthetic and biological multiplicity of isatin: a review,” Journal of Advanced Scientific Research, vol. 2, no. 2, pp. 35–44, 2011. View at Google Scholar
  25. N. Blazevic, D. Kolbah, B. Belin, V. Sunjic, and F. Kajfez, “Hexamethylenetetramine, “A versatile reagent in organic synthesis”,” Synthesis, pp. 167–176, 1979. View at Google Scholar
  26. B. Rigoa, P. Caulieza, D. Fasseurb, and D. Couturierb, “Reaction of hexamethyldisilazane with diacylhydrazines: an easy 1,3,4-oxadiazole synthesis,” Synthetic Communications, vol. 16, no. 13, pp. 1665–1669, 1986. View at Publisher · View at Google Scholar
  27. M. Ogata and H. Matsumoto, “A convenient synthesis of 5-substituted 1,3-dihydro-2H-1,4-benzodiazepine-2-ones,” Chemistry and Industry, p. 1067, 1976. View at Google Scholar
  28. H. Fujishima, H. Takeshita, S. Suzuki, M. Toyota, and M. Ihara, “Hexamethyldisilazanes mediated one-pot intramolecular Michael addition-olefination reactions leading to ejvo-olefinated bicyclo[6.4.0]dodecanes,” Journal of the Chemical Society, Perkin Transactions 1, no. 18, pp. 2609–2616, 1999. View at Google Scholar · View at Scopus