Table of Contents
Advances in Ecology
Volume 2014, Article ID 532687, 9 pages
http://dx.doi.org/10.1155/2014/532687
Review Article

Living at the Limits: Evidence for Microbial Eukaryotes Thriving under Pressure in Deep Anoxic, Hypersaline Habitats

1Department of Ecology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
2Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
3Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD 21613, USA
4Institute for Coastal Marine Environment, CNR, Spianata S. Raineri 86, 98122 Messina, Italy

Received 4 February 2014; Revised 8 April 2014; Accepted 14 April 2014; Published 8 May 2014

Academic Editor: Eiko Kuramae

Copyright © 2014 Thorsten Stoeck et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. J. de Lange and H. L. Ten Haven, “Recent sapropel formation in the eastern Mediterranean,” Nature, vol. 305, no. 5937, pp. 797–798, 1983. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Camerlenghi, “Anoxic basins of the eastern Mediterranean: geological framework,” Marine Chemistry, vol. 31, no. 1–3, pp. 1–19, 1990. View at Google Scholar · View at Scopus
  3. D. Jongsma, A. R. Fortuin, W. Huson et al., “Discovery of an anoxic basin within the strabo trench, eastern mediterranean,” Nature, vol. 305, no. 5937, pp. 795–797, 1983. View at Publisher · View at Google Scholar · View at Scopus
  4. M. B. Cita, F. S. Aghib, A. Cambi et al., “Precipitazione attuale di gesso in un bacino anossico profondo, prime osservazioni geologiche, idrologiche, paleontologiche sul Bacino Bannock (Mediterraneo orientale),” Geol, vol. 47, pp. 143–163, 1985. View at Google Scholar
  5. V. la Cono, F. Smedile, G. Bortoluzzi et al., “Unveiling microbial life in new deep-sea hypersaline Lake Thetis. Part I: prokaryotes and environmental settings,” Environmental Microbiology, vol. 13, no. 8, pp. 2250–2268, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. M. M. Yakimov, V. la Cono, V. Z. Slepak et al., “Microbial life in the Lake Medee, the largest deep-sea salt-saturated formation,” Scientific Reports, vol. 3, article 3554, 2013. View at Google Scholar
  7. M. B. Cita, “Exhumation of Messinian evaporites in the deep-sea and creation of deep anoxic brine-filled collapsed basins,” Sedimentary Geology, vol. 188-189, pp. 357–378, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. K. J. Hsü, M. B. Cita, and W. B. F. Ryan, “The origin of the Mediterranean evaporites,” Initial Reports of the Deep Sea Drilling Project, vol. 13, no. 1-2, pp. 1203–1231, 1973. View at Google Scholar
  9. F. H. Stewart, Marine Evaporites, United States Government Printing Office, Washington, DC, USA, 1963.
  10. G. J. de Lange, J. J. Middelburg, C. H. van der Weijden et al., “Composition of anoxic hypersaline brines in the Tyro and Bannock Basins, eastern Mediterranean,” Marine Chemistry, vol. 31, no. 1–3, pp. 63–88, 1990. View at Google Scholar · View at Scopus
  11. V. P. Edgcomb, W. Orsi, H.-W. Breiner et al., “Novel active kinetoplastids associated with hypersaline anoxic basins in the Eastern Mediterranean deep-sea,” Deep-Sea Research I: Oceanographic Research Papers, vol. 58, no. 10, pp. 1040–1048, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. P. W. J. J. van der Wielen, H. Bolhuis, S. Borin et al., “The enigma of prokaryotic life in deep hypersaline anoxic basins,” Science, vol. 307, no. 5706, pp. 121–123, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Wallmann, E. Suess, G. H. Westbrook, G. Winckler, and M. B. Cita, “Salty brines on the Mediterranean sea floor,” Nature, vol. 387, no. 6628, pp. 31–32, 1997. View at Google Scholar · View at Scopus
  14. S. Borin, L. Brusetti, F. Mapelli et al., “Sulfur cycling and methanogenesis primarily drive microbial colonization of the highly sulfidic Urania deep hypersaline basin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 23, pp. 9151–9156, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Daffonchio, S. Borin, T. Brusa et al., “Stratified prokaryote network in the oxic-anoxic transition of a deep-sea halocline,” Nature, vol. 440, no. 7081, pp. 203–207, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. M. M. Yakimov, V. la Cono, R. Denaro et al., “Primary producing prokaryotic communities of brine, interface and seawater above the halocline of deep anoxic lake L'Atalante, Eastern Mediterranean Sea,” ISME Journal, vol. 1, no. 8, pp. 743–755, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. G. T. Taylor, M. Iabichella, T.-Y. Ho et al., “Chemoautotrophy in the redox transition zone of the Cariaco Basin: a significant midwater source of organic carbon production,” Limnology and Oceanography, vol. 46, no. 1, pp. 148–163, 2001. View at Google Scholar · View at Scopus
  18. E. Alexander, A. Stock, H.-W. Breiner et al., “Microbial eukaryotes in the hypersaline anoxic L'Atalante deep-sea basin,” Environmental Microbiology, vol. 11, no. 2, pp. 360–381, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. V. Edgcomb, W. Orsi, C. Leslin et al., “Protistan community patterns within the brine and halocline of deep hypersaline anoxic basins in the eastern Mediterranean Sea,” Extremophiles, vol. 13, no. 1, pp. 151–167, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Stock, H.-W. Breiner, M. Pachiadaki et al., “Microbial eukaryote life in the new hypersaline deep-sea basin Thetis,” Extremophiles, vol. 16, no. 1, pp. 21–34, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. D. A. Caron, P. D. Countway, A. C. Jones, D. Y. Kim, and A. Schnetzer, “Marine protistan diversity,” Annual Review of Marine Science, vol. 4, pp. 467–493, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Epstein and P. López-García, ““Missing” protists: a molecular prospective,” Biodiversity and Conservation, vol. 17, no. 2, pp. 261–276, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. W. D. Grant, “Life at low water activity,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 359, pp. 1249–1267, 2004. View at Google Scholar
  24. R. Logares, J. Bråte, S. Bertilsson, J. L. Clasen, K. Shalchian-Tabrizi, and K. Rengefors, “Infrequent marine-freshwater transitions in the microbial world,” Trends in Microbiology, vol. 17, no. 9, pp. 414–422, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. D. Forster, A. Behnke, and T. Stoeck, “Meta-analyses of environmental sequence data identify anoxia and salinity as parameters shaping ciliate communities,” Systematics and Biodiversity, vol. 10, pp. 277–288, 2012. View at Google Scholar
  26. J. Elloumi, J.-F. Carrias, H. Ayadi, T. Sime-Ngando, and A. Bouaïn, “Communities structure of the planktonic halophiles in the solar saltern of Sfax, Tunisia,” Estuarine, Coastal and Shelf Science, vol. 81, no. 1, pp. 19–26, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. J. S. Park and A. G. B. Simpson, “Characterization of halotolerant Bicosoecida and Placididea (Stramenopila) that are distinct from marine forms, and the phylogenetic pattern of salinity preference in heterotrophic stramenopiles,” Environmental Microbiology, vol. 12, no. 5, pp. 1173–1184, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. M. F. Estep and T. C. Hoering, “Stable hydrogen isotope fractionations during autotrophic and mixotrophic growth of microalgae,” Plant Physiology, vol. 67, no. 3, pp. 474–477, 1981. View at Google Scholar
  29. J. Ruinen, “Notizen über Ciliaten aus konzentrierten Salzgewässern,” Zoologische Mededelingen, vol. 20, pp. 243–256, 1938. View at Google Scholar
  30. F. J. Post, L. J. Borowitzka, M. A. Borowitzka, B. Mackay, and T. Moulton, “The protozoa of a Western Australian hypersaline lagoon,” Hydrobiologia, vol. 105, no. 1, pp. 95–113, 1983. View at Publisher · View at Google Scholar · View at Scopus
  31. D. J. Patterson and A. G. B. Simpson, “Heterotrophic flagellates from coastal marine and hypersaline sediments in Western Australia,” European Journal of Protistology, vol. 32, no. 4, pp. 423–448, 1996. View at Google Scholar · View at Scopus
  32. J. S. Park, B. C. Cho, and A. G. B. Simpson, “Halocafeteria seosinensis gen. et sp. nov. (Bicosoecida), a halophilic bacterivorous nanoflagellate isolated from a solar saltern,” Extremophiles, vol. 10, no. 6, pp. 493–504, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Ruinen, “Notizen über Salzflagellaten II. Über die Verbreitung der Salzflagellaten,” Archiv für Protistenkunde, vol. 90, pp. 210–258, 1938. View at Google Scholar
  34. J. Tucolesco, “Etudes Protozoologiques sur les eaux Roumaines. I. Espèces nouvelles d’Infusoires de la mer Noire et des Bassins salés Paramarins,” Archiv für Protistenkunde, vol. 106, pp. 1–36, 1962. View at Google Scholar
  35. G. F. Esteban and B. J. Finlay, “Cryptic Freshwater Ciliates in a Hypersaline Lagoon,” Protist, vol. 154, no. 3-4, pp. 411–418, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Elloumi, J.-F. Carrias, H. Ayadi, T. Sime-Ngando, M. Boukhris, and A. Bouaïn, “Composition and distribution of planktonic ciliates from ponds of different salinity in the solar saltwork of Sfax, Tunisia,” Estuarine, Coastal and Shelf Science, vol. 67, no. 1-2, pp. 21–29, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. N. Gunde-Cimerman, J. Ramos, and A. Plemenitaš, “Halotolerant and halophilic fungi,” Mycological Research, vol. 113, no. 11, pp. 1231–1241, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Lei, K. Xu, J. Ki Choi, H. Pyo Hong, and S. A. Wickham, “Community structure and seasonal dynamics of planktonic ciliates along salinity gradients,” European Journal of Protistology, vol. 45, no. 4, pp. 305–319, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Oren, “Biodiversity in highly saline environments,” in Physiology and Biochemistry of Extremophiles, C. Gerday and N. Glansdorff, Eds., pp. 223–231, ASM Press, Washington, DC, USA, 2007. View at Google Scholar
  40. T. Fenchel and B. J. Finlay, Ecology and Evolution in Anoxic Worlds, Oxford University Press, Oxford, UK, 1995.
  41. S. Y. Moon-van der Staay, R. de Wachter, and D. Vaulot, “Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity,” Nature, vol. 409, no. 6820, pp. 607–610, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. B. Díez, C. Pedrós-Alió, and R. Massana, “Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small-subunit rRNA gene cloning and sequencing,” Applied and Environmental Microbiology, vol. 67, no. 7, pp. 2932–2941, 2001. View at Publisher · View at Google Scholar · View at Scopus
  43. P. López-García, F. Rodríguez-Valera, C. Pedrós-Alió, and D. Moreira, “Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton,” Nature, vol. 409, no. 6820, pp. 603–607, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. S. C. Dawson and N. R. Pace, “Novel kingdom-level eukaryotic diversity in anoxic environments,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 12, pp. 8324–8329, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. P. López-García, H. Philippe, F. Gail, and D. Moreira, “Autochthonous eukaryotic diversity in hydrothermal sediment and experimental microcolonizers at the Mid-Atlantic Ridge,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 2, pp. 697–702, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. T. Stoeck and S. Epstein, “Novel eukaryotic lineages inferred from small-subunit rRNA analyses of oxygen-depleted marine environments,” Applied and Environmental Microbiology, vol. 69, no. 5, pp. 2657–2663, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. K. Romari and D. Vaulot, “Composition and temporal variability of picoeukaryote communities at a coastal site of the English Channel from 18S rDNA sequences,” Limnology and Oceanography, vol. 49, no. 3, pp. 784–798, 2004. View at Google Scholar · View at Scopus
  48. P. D. Countway, R. J. Gast, P. Savai, and D. A. Caron, “Protistan diversity estimates based on 18S rDNA from seawater incubations in the Western North Atlantic,” Journal of Eukaryotic Microbiology, vol. 52, no. 2, pp. 95–106, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. A. Behnke, J. Bunge, K. Barger, H.-W. Breiner, V. Alla, and T. Stoeck, “Microeukaryote community patterns along an O2/H2S gradient in a supersulfidic anoxic Fjord (Framvaren, Norway),” Applied and Environmental Microbiology, vol. 72, no. 5, pp. 3626–3636, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. R. J. Gast, D. M. Moran, D. J. Beaudoin, J. N. Blythe, M. R. Dennett, and D. A. Caron, “Abundance of a novel dinoflagellate phylotype in the Ross Sea, Antarctica,” Journal of Phycology, vol. 42, no. 1, pp. 233–242, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. C. Lovejoy, R. Massana, and C. Pedrós-Alió, “Diversity and distribution of marine microbial eukaryotes in the arctic ocean and adjacent seas,” Applied and Environmental Microbiology, vol. 72, no. 5, pp. 3085–3095, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. A. Z. Worden, “Picoeukaryote diversity in coastal waters of the Pacific Ocean,” Aquatic Microbial Ecology, vol. 43, no. 2, pp. 165–175, 2006. View at Google Scholar · View at Scopus
  53. A. Zuendorf, A. Behnke, J. Bunge, K. J.-A. Barger, and T. Stoeck, “Diversity estimates of microeukaryotes below the chemocline of the anoxic Mariager Fjord, Denmark,” FEMS Microbiology Ecology, vol. 58, no. 3, pp. 476–491, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Stock, K. Jürgens, J. Bunge, and T. Stoeck, “Protistan diversity in suboxic and anoxic waters of the Gotland Deep (Baltic Sea) as revealed by 18SrRNA clone libraries,” Aquatic Microbial Ecology, vol. 55, no. 3, pp. 267–284, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. M. L. Sogin, H. G. Morrison, J. A. Huber et al., “Microbial diversity in the deep sea and the underexplored ‘rare biosphere’,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 32, pp. 12115–12120, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. L. F. W. Roesch, R. R. Fulthorpe, A. Riva et al., “Pyrosequencing enumerates and contrasts soil microbial diversity,” ISME Journal, vol. 1, no. 4, pp. 283–290, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. T. Stoeck, A. Behnke, R. Christen et al., “Massively parallel tag sequencing reveals the complexity of anaerobic marine protistan communities,” BMC Biology, vol. 7, article 1741, p. 72, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. T. Stoeck, D. Bass, M. Nebel et al., “Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water,” Molecular Ecology, vol. 19, no. 1, pp. 21–31, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. L. A. Amaral-Zettler, E. A. McCliment, H. W. Ducklow, and S. M. Huse, “A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA Genes,” PLoS ONE, vol. 4, no. 7, Article ID e6372, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Chao, R. L. Chazdon, R. K. Colwell, and T.-J. Shen, “Abundance-based similarity indices and their estimation when there are unseen species in samples,” Biometrics, vol. 62, no. 2, pp. 361–371, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. B. Haegeman, J. Hamelin, J. Moriarty, P. Neal, J. Dushoff, and J. S. Weitz, “Robust estimation of microbial diversity in theory and in practice,” The ISME Journal, vol. 7, no. 6, pp. 1092–1101, 2013. View at Google Scholar
  62. T. Stoeck, A. Zuendorf, H.-W. Breiner, and A. Behnke, “A molecular approach to identify active microbes in environmental eukaryote clone libraries,” Microbial Ecology, vol. 53, no. 2, pp. 328–339, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. F. Not, J. del Campo, V. Balagué, C. de Vargas, and R. Massana, “New insights into the diversity of marine picoeukaryotes,” PLoS ONE, vol. 4, no. 9, Article ID e7143, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. T. Stoeck, B. Hayward, G. T. Taylor, R. Varela, and S. S. Epstein, “A multiple PCR-primer approach to access the microeukaryotic diversity in environmental samples,” Protist, vol. 157, no. 1, pp. 31–43, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. A. Jumpponen, “Soil fungal communities underneath willow canopies on a primary successional glacier forefront: rDNA sequence results can be affected by primer selection and chimeric data,” Microbial Ecology, vol. 53, no. 2, pp. 233–246, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. A. Engelbrektson, V. Kunin, K. C. Wrighton et al., “Experimental factors affecting PCR-based estimates of microbial species richness and evenness,” ISME Journal, vol. 4, no. 5, pp. 642–647, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. S. Filker, A. Stock, H.-W. Breiner et al., “Environmental selection of protistan plankton communities in hypersaline anoxic deep-sea basins, Eastern Mediterranean Sea,” MicrobiologyOpen, vol. 2, no. 1, pp. 54–63, 2013. View at Google Scholar
  68. A. Stock, V. Edgcomb, W. Orsi et al., “Evidence for isolated evolution of deep-sea ciliate communities through geological separation and environmental selection,” BMC Microbiology, vol. 13, article 150, 2013. View at Google Scholar
  69. A. Behnke, K. J. Barger, J. Bunge, and T. Stoeck, “Spatio-temporal variations in protistan communities along an O2/H2S gradient in the anoxic Framvaren Fjord (Norway),” FEMS Microbiology Ecology, vol. 72, no. 1, pp. 89–102, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. V. Edgcomb, W. Orsi, J. Bunge et al., “Protistan microbial observatory in the Cariaco Basin, Caribbean. I. Pyrosequencing vs Sanger insights into species richness,” ISME Journal, vol. 5, no. 8, pp. 1344–1356, 2011. View at Publisher · View at Google Scholar · View at Scopus
  71. W. Orsi, V. Edgcomb, S. Jeon et al., “Protistan microbial observatory in the Cariaco Basin, Caribbean. II. Habitat specialization,” ISME Journal, vol. 5, no. 8, pp. 1357–1373, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. C. E. Lee and M. A. Bell, “Causes and consequences of recent freshwater invasions by saltwater animals,” Trends in Ecology and Evolution, vol. 14, no. 7, pp. 284–288, 1999. View at Publisher · View at Google Scholar · View at Scopus
  73. E. O. Casamayor, X. Triado-Margarit, and C. Castaneda, “Microbial biodiversity in saline shallow lakes of the Monegros Desert, Spain,” FEMS Microbiology Ecology, vol. 85, no. 3, pp. 503–518, 2013. View at Google Scholar
  74. A. Oren, “The bioenergetic basis for the decrease in metabolic diversity at increasing salt concentrations: implications for the functioning of salt lake ecosystems,” Hydrobiologia, vol. 466, pp. 61–72, 2001. View at Publisher · View at Google Scholar · View at Scopus
  75. A. Oren, Halophilic Microorganisms and Their Environments, vol. 5, Kluwer Academic, Dordrecht, The Netherlands, 2002.
  76. T. Stoeck, G. T. Taylor, and S. S. Epstein, “Novel eukaryotes from the permanently anoxic Cariaco Basin (Caribbean Sea),” Applied and Environmental Microbiology, vol. 69, no. 9, pp. 5656–5663, 2003. View at Publisher · View at Google Scholar · View at Scopus
  77. W. Orsi, Y. C. Song, S. Hallam, and V. Edgcomb, “Effect of oxygen minimum zone formation on communities of marine protists,” ISME Journal, vol. 6, no. 8, pp. 1586–1601, 2012. View at Publisher · View at Google Scholar · View at Scopus
  78. M. Müller, M. Mentel, J. J. van Hellemond et al., “Biochemistry and evolution of anaerobic energy metabolism in eukaryotes,” MicroBiology and Molecular Biology Reviews, vol. 76, no. 2, pp. 444–495, 2012. View at Google Scholar
  79. J. E. Hallsworth, M. M. Yakimov, P. N. Golyshin et al., “Limits of life in MgCl2-containing environments: chaotropicity defines the window,” Environmental Microbiology, vol. 9, no. 3, pp. 801–813, 2007. View at Publisher · View at Google Scholar · View at Scopus
  80. H. J. Kunte, H. Trüper, and H. Stan-Lotter, “Halophilic microorganisms,” in Astrobiology the Quest for the Conditions of Life, G. Horneck and C. Baumstark-Khan, Eds., pp. 185–200, Springer, Berlin, Germany, 2002. View at Google Scholar
  81. B. W. Catlin and L. S. Cunningham, “Studies of extracellular and intracellular bacterial deoxyribonucleic acids,” Journal of General Microbiology, vol. 19, no. 3, pp. 522–539, 1958. View at Google Scholar · View at Scopus
  82. S. Borin, E. Crotti, F. Mapelli, I. Tamagnini, C. Corselli, and D. Daffonchio, “DNA is preserved and maintains transforming potential after contact with brines of the deep anoxic hypersaline lakes of the Eastern Mediterranean Sea,” Saline Systems, vol. 4, no. 1, article 10, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. R. Amann, B. M. Fuchs, and S. Behrens, “The identification of microorganisms by fluorescence in situ hybridisation,” Current Opinion in Biotechnology, vol. 12, no. 3, pp. 231–236, 2001. View at Publisher · View at Google Scholar · View at Scopus
  84. W. Ludwig, O. Strunk, R. Westram et al., “ARB: a software environment for sequence data,” Nucleic Acids Research, vol. 32, no. 4, pp. 1363–1371, 2004. View at Publisher · View at Google Scholar · View at Scopus
  85. J. Pernthaler, F. O. Glöckner, W. Schönhuber, and R. Amann, “Fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes,” in Methods in Microbiology, J. H. Paul, Ed., vol. 30, pp. 207–226, Academic Press, San Diego, Calif, USA, 2001. View at Google Scholar
  86. A. G. B. Simpson, J. Lukeš, and A. J. Roger, “The evolutionary history of kinetoplastids and their kinetoplasts,” Molecular Biology and Evolution, vol. 19, no. 12, pp. 2071–2083, 2002. View at Google Scholar · View at Scopus
  87. S. von der Heyden, E. E. Chao, K. Vickerman, and T. Cavalier-Smith, “Ribosomal RNA phylogeny of bodonid and diplonemid flagellates and the evolution of euglenozoa,” Journal of Eukaryotic Microbiology, vol. 51, no. 4, pp. 402–416, 2004. View at Publisher · View at Google Scholar · View at Scopus
  88. W. Orsi, V. Edgcomb, J. Faria et al., “Class Cariacotrichea, a novel ciliate taxon from the anoxic Cariaco Basin, Venezuela,” International Journal of Systematic and Evolutionary Microbiology, vol. 62, part 6, pp. 1425–1433, 2012. View at Google Scholar
  89. W. Orsi, S. Charvet, P. Vd'ačný, J. M. Bernhard, and V. P. Edgcomb, “Prevalence of partnerships between bacteria and ciliates in oxygen-depleted marine water columns,” Frontiers in Microbiology, vol. 3, article 341, 2012. View at Google Scholar
  90. S. Filker, M. Kaiser, R. Rosseló-Móra, M. Dunthorn, G. Lax, and T. Stoeck, ““Candidatus Haloectosymbiotes riaformosensis” (Halobacteriaceae), an archaeal ectosymbiont of the hypersaline ciliate Platynematum salinarum,” Systematic and Applied Microbiology, 2014. View at Publisher · View at Google Scholar
  91. W. Foissner, J.-H. Jung, S. Filker, J. Rudolph, and T. Stoeck, “Morphology, ontogenesis and molecular phylogeny of Platynematum salinarum nov. spec., a new scuticociliate (Ciliophora, Scuticociliatia) from a solar saltern,” European Journal of Protistology, vol. 50, no. 2, pp. 174–184, 2013. View at Google Scholar
  92. A. Antunes, D. K. Ngugi, and U. Stingl, “Microbiology of the Red Sea (and other) deep-sea anoxic brine lakes,” Environmental Microbiology Reports, vol. 3, no. 4, pp. 416–433, 2011. View at Publisher · View at Google Scholar · View at Scopus
  93. R. F. Shokes, P. K. Trabant, B. J. Presley, and D. F. Reid, “Anoxic, hypersaline basin in the northern Gulf of Mexico,” Science, vol. 196, no. 4297, pp. 1443–1446, 1977. View at Google Scholar · View at Scopus
  94. B. J. Finlay, “Global dispersal of free-living microbial eukaryote species,” Science, vol. 296, no. 5570, pp. 1061–1063, 2002. View at Publisher · View at Google Scholar · View at Scopus
  95. J. G. Caporaso, J. Kuczynski, J. Stombaugh et al., “QIIME allows analysis of high-throughput community sequencing data,” Nature Methods, vol. 7, no. 5, pp. 335–336, 2010. View at Publisher · View at Google Scholar · View at Scopus
  96. M. S. Cline, M. Smoot, E. Cerami et al., “Integration of biological networks and gene expression data using Cytoscape,” Nature protocols, vol. 2, no. 10, pp. 2366–2382, 2007. View at Publisher · View at Google Scholar · View at Scopus
  97. M. E. Nebel, S. Wild, M. Holzhauser et al., “Jaguc-a software package for environmental diversity analyses,” Journal of Bioinformatics and Computational Biology, vol. 9, no. 6, pp. 749–773, 2011. View at Publisher · View at Google Scholar · View at Scopus