Table of Contents
Advances in Environmental Chemistry
Volume 2014, Article ID 958134, 8 pages
http://dx.doi.org/10.1155/2014/958134
Research Article

Experimental Design of Photo-Fenton Reactions for the Treatment of Car Wash Wastewater Effluents by Response Surface Methodological Analysis

1Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York YO10 5DD, UK
2Basic Engineering Science Department, Faculty of Engineering, Minoufiya University, Shebin El Koum, Minoufiya 32511, Egypt
3Centre for Water Resources Research, School of Architecture, Landscape and Civil Engineering, University College Dublin, Newstead, Belfield, Dublin 4, Ireland

Received 2 May 2014; Revised 20 July 2014; Accepted 4 August 2014; Published 25 August 2014

Academic Editor: Huu Hao Ngo

Copyright © 2014 Maha A. Tony and Zeinab Bedri. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Smith, “Public survey used to estimate pollutant loads in Maryland. Technical Note 73,” Watershed Prtection Tecnology, vol. 2, no. 2, pp. 361–363, 1996. View at Google Scholar
  2. N. Hardwick, Lake Sammamish Watershed Water Quality Survey, King County Water and Land Resources Division, Seattle, Wash, USA, 1997.
  3. National Environmental Education Training Foundation (NEETF), National Report Card on Environmental Knowledge, Attitudes and Behaviors: Seventh Annual Roper Survey of Adult Americans, National Environmental Education Training Foundation, Washington, DC, USA, 1999.
  4. K. Madwar and H. Tarazi, “Desalination techniques for industrial wastewater reuse,” Desalination, vol. 152, no. 1–3, pp. 325–332, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. M. F. Abdel-Sabour, H. I. Abdel-Shafy, and A. R. Mohamed, “Plant yield production and heavy metals accumulation as affected by sewage sludge application on desert soil,” Sustainable Water Management, vol. 1, pp. 27–31, 2005. View at Google Scholar
  6. I. Hua and M. R. Hoffmann, “Optimization of ultrasonic irradiation as an advanced oxidation technology,” Environmental Science and Technology, vol. 31, no. 8, pp. 2237–2243, 1997. View at Publisher · View at Google Scholar · View at Scopus
  7. W. H. Glaze, Y. Lay, and J. W. Kang, “Advanced oxidation processes: a kinetic model for the oxidation of 1,2-dibromo-3-chloropropane in water by the combination of hydrogen peroxide and UV radiation,” Industrial and Engineering Chemistry Research, vol. 34, no. 7, pp. 2314–2323, 1995. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Ensing, F. Buda, and E. J. Baerends, “Fenton-like chemistry in water: oxidation catalysis by Fe(III) and H2O2,” Journal of Physical Chemistry A, vol. 107, no. 30, pp. 5722–5731, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. R. F. P. Nogueira, A. G. Trovó, and W. C. Paterlini, “Evaluation of the combined solar TiO2/photo-Fenton process using multivariate analysis,” Water Science and Technology, vol. 49, no. 4, pp. 195–200, 2004. View at Google Scholar · View at Scopus
  10. M. A. Tony, P. J. Purcell, Y. Q. Zhao, A. M. Tayeb, and M. F. El-Sherbiny, “Photo-catalytic degradation of an oil-water emulsion using the photo-fenton treatment process: effects and statistical optimization,” Journal of Environmental Science and Health A, vol. 44, no. 2, pp. 179–187, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. E. Evgenidou, K. Fytianos, and I. Poulios, “Semiconductor-sensitized photodegradation of dichlorvos in water using TiO2 and ZnO as catalysts,” Applied Catalysis B: Environmental, vol. 59, no. 1-2, pp. 81–89, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Petrier, M. Micolle, G. Merlin, J. L. Luche, and G. Reverdy, “Characteristics of pentachlorophenate degradation in aqueous solution by means of ultrasound,” Environmental Science & Technology, vol. 26, no. 8, pp. 1639–1642, 1992. View at Publisher · View at Google Scholar
  13. Y. Xiao, G. Wang, H. Liu et al., “Treatment of H-acid wastewater by photo-fenton reagent combined with a biotreatment process: a study on optimum conditions of pretreatment by a photo-fenton process,” Bulletin of Environmental Contamination and Toxicology, vol. 69, no. 3, pp. 430–435, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Sanz, J. I. Lombrana, A. M. de Luis, M. Ortueta, and F. Varona, “Microwave and Fentons reagent oxidation of wastewater,” Environmental Chemistry Letters, vol. 50, pp. 1–45, 2003. View at Google Scholar
  15. F. J. Rivas, F. J. Beltrán, O. Gimeno, and J. Frades, “Treatment of olive oil mill wastewater by Fenton’s reagent,” Journal of Agricultural and Food Chemistry, vol. 49, no. 4, pp. 1873–1880, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. M. A. Tony, P. J. Purcell, Y. Q. Zhao, and M. F. El-Sherbiny, “Evaluating the photo-catalytic application of Fenton’s reagent augmented with TiO2 and ZnO for the mineralization of an oil-water emulsion,” Journal of Environmental Science and Health A, vol. 44, no. 5, pp. 488–493, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. SAS, SAS/STAT User’s Guide, SAS Institute, Cary, NC, USA, 1990.
  18. F. Torrades, M. Pérez, H. D. Mansilla, and J. Peral, “Experimental design of Fenton and photo-Fenton reactions for the treatment of cellulose bleaching effluents,” Chemosphere, vol. 53, no. 10, pp. 1211–1220, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. C. T. Benatti, C. R. G. Tavares, and T. A. Guedes, “Optimization of Fenton’s oxidation of chemical laboratory wastewaters using the response surface methodology,” Journal of Environmental Management, vol. 80, no. 1, pp. 66–74, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. D. C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons, New York, NY, USA, 1991. View at MathSciNet
  21. V. Sarria, S. Kenfack, O. Guillod, and C. Pulgarin, “An innovative coupled solar-biological system at field pilot scale for the treatment of biorecalcitrant pollutants,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 159, no. 1, pp. 89–99, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Kositzi, I. Poulios, S. Malato, J. Caceres, and A. Campos, “Solar photocatalytic treatment of synthetic municipal wastewater,” Water Research, vol. 38, no. 5, pp. 1147–1154, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. W. Z. Tang and C. P. Huang, “2,4-dichlorophenol oxidation kinetics by Fenton’s reagent,” Environmental Technology, vol. 17, no. 12, pp. 1371–1378, 1996. View at Publisher · View at Google Scholar · View at Scopus
  24. W. Chu, “Modeling the quantum yields of herbicide 2,4-D decay in UV/H2O2 process,” Chemosphere, vol. 44, no. 5, pp. 935–941, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Litorja and B. Ruscic, “A photoionization study of the hydroperoxyl radical, HO2, and hydrogen peroxide, H2O2,” Journal of Electron Spectroscopy and Related Phenomena, vol. 97, no. 1-2, pp. 131–146, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Fongsatitkul, P. Elefsiniotis, A. Yamasmit, and N. Yamasmit, “Use of sequencing batch reactors and Fenton’s reagent to treat a wastewater from a textile industry,” Biochemical Engineering Journal, vol. 21, no. 3, pp. 213–220, 2004. View at Publisher · View at Google Scholar · View at Scopus