Table of Contents
Advances in Electrical Engineering
Volume 2014 (2014), Article ID 765053, 14 pages
http://dx.doi.org/10.1155/2014/765053
Research Article

Performance of Various Metaheuristic Techniques for Economic Dispatch Problem with Valve Point Loading Effects and Multiple Fueling Options

1Faculty of Electrical Engineering, Hamdard University, Islamabad Campus, Islamabad 44000, Pakistan
2Department of Electrical Engineering, Bahria University, Islamabad Campus, Islamabad 44000, Pakistan

Received 16 July 2014; Revised 5 November 2014; Accepted 6 November 2014; Published 27 November 2014

Academic Editor: Mamun B. Ibne Reaz

Copyright © 2014 Ijaz Ahmed et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P.-H. Chen and H.-C. Chang, “Large-scale economic dispatch by genetic algorithm,” IEEE Transactions on Power Systems, vol. 10, no. 4, pp. 1919–1926, 1995. View at Publisher · View at Google Scholar
  2. R. K. Swaina, N. C. Sahub, and P. K. Hotac, “Gravitational search algorithm for optimal economic dispatch,” Procedia Technology, vol. 6, pp. 411–419, 2012, Proceedings of the 2nd International Conference on Communication, Computing & Security (ICCCS ’12). View at Google Scholar
  3. R. Poli, “Analysis of the publications on the applications of particle swarm optimisation,” Journal of Artificial Evolution and Applications, vol. 2008, Article ID 685175, 10 pages, 2008. View at Publisher · View at Google Scholar
  4. Z.-L. Gaing, “Particle swarm optimization to solving the economic dispatch considering the generator constraints,” IEEE Transactions on Power Systems, vol. 18, no. 3, pp. 1187–1195, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. D. He, F. Wang, and Z. Mao, “A hybrid genetic algorithm approach based on differential evolution for economic dispatch with valve-point effect,” International Journal of Electrical Power & Energy Systems, vol. 30, no. 1, pp. 31–38, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Naama, H. Bouzeboudja, and A. Allali, “Solving the economic dispatch problem by using Tabu Search algorithm,” in Proceedings of the TerraGreen International Conference on Advancements in Renewable Energy and Clean Environment, pp. 694–701, February 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. M. A. Abido, “Multiobjective evolutionary algorithms for electric power dispatch problem,” IEEE Transactions on Evolutionary Computation, vol. 10, no. 3, pp. 315–329, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. F. S. Wen and C. S. Chang, “Probabilistic approach for fault-section estimation in power systems based on a refined genetic algorithm,” IEE Proceedings—Generation, Transmission and Distribution, vol. 144, no. 2, pp. 160–168, 1997. View at Publisher · View at Google Scholar
  9. L. dos Santos Coelho and V. C. Mariani, “Particle swarm approach based on quantum mechanics and harmonic oscillator potential well for economic load dispatch with valve-point effects,” Energy Conversion and Management, vol. 49, no. 11, pp. 3080–3085, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. J. S. Al-Sumait, J. K. Sykulski, and A. K. Al-Othman, “Solution of different types of economic load dispatch problems using a pattern search method,” Electric Power Components and Systems, vol. 36, no. 3, pp. 250–265, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. L. D. S. Coelho and V. C. Mariani, “An improved harmony search algorithm for power economic load dispatch,” Energy Conversion and Management, vol. 50, no. 10, pp. 2522–2526, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Yalcinoz, H. Altun, and M. Uzam, “Economic dispatch solution using a genetic algorithm based on arithmetic crossover,” in Proceedings of the IEEE Porto Power Tech Conference (PPT '01), Porto, Portugal, September 2001.
  13. W.-M. Lin, F.-S. Cheng, and M.-T. Tsay, “An improved tabu search for economic dispatch with multiple minima,” IEEE Transactions on Power Systems, vol. 17, no. 1, pp. 108–112, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. D. T. Phan and A. Koc, “Optimization approaches to security-constrained unit commitment and economic dispatch with uncertainty analysis,” in Optimization and Security Challenges in Smart Power Grids, Energy Systems, pp. 1–37, Springer, Berlin, Germany, 2013. View at Publisher · View at Google Scholar
  15. Ü. B. Filik and M. Kurban, “Solving unit commitment problem using modified subgradient method combined with simulated annealing algorithm,” Mathematical Problems in Engineering, vol. 2010, Article ID 295645, 15 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. A. R. Balbo, M. A. da Silva Souza, E. C. Baptista, and L. Nepomuceno, “Predictor-corrector primal-dual interior point method for solving economic dispatch problems: a postoptimization analysis,” Mathematical Problems in Engineering, vol. 2012, Article ID 376546, 26 pages, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  17. J. Li, D. Niu, and Y. Wu, “A parallel adaptive particle swarm optimization algorithm for economic/environmental power dispatch,” Mathematical Problems in Engineering, vol. 2012, Article ID 271831, 14 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Barbagallo, E. di Nitto, D. J. Dubois, and R. Mirandola, “A bio-inspired algorithm for energy optimization in a self-organizing data center,” in Self-Organizing Architectures, vol. 6090 of Lecture Notes in Computer Science, pp. 127–151, 2010. View at Google Scholar
  19. A. Pereira-Neto, C. Unsihuay, and O. R. Saavedra, “Efficient evolutionary strategy optimization procedure to solve the nonconvex economic dispatch problem with generator constraints,” IEEE Proceeding—Generation, Transmission and Distribution, vol. 152, no. 5, pp. 653–660, 2005. View at Publisher · View at Google Scholar
  20. T. A. A. Victoire and A. E. Jeyakumar, “Discussion of “particle swarm optimization to solving the economic dispatch considering the generator constraints”,” IEEE Transactions on Power Systems, vol. 19, no. 4, pp. 2121–2122, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. L. D. S. Coelho and C.-S. Lee, “Solving economic load dispatch problems in power systems using chaotic and Gaussian particle swarm optimization approaches,” International Journal of Electrical Power and Energy Systems, vol. 30, no. 5, pp. 297–307, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. D. P. Kothari and J. S. Dhilon, Power System Optimization, PHI Learning, New Delhi, India, 2010.
  23. L. D. S. Coelho, R. C. Souza, and V. C. Mariani, “Improved differential evolution approach based on cultural algorithm and diversity measure applied to solve economic load dispatch problems,” Mathematics and Computers in Simulation, vol. 79, no. 10, pp. 3136–3147, 2009. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  24. E. H. Aarts, J. H. Korst, and P. J. van Laarhoven, “A quantitative analysis of the simulated annealing algorithm: a case study for the traveling salesman problem,” Journal of Statistical Physics, vol. 50, no. 1-2, pp. 187–206, 1988. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  25. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  26. V. Černý, “Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm,” Journal of Optimization Theory and Applications, vol. 45, no. 1, pp. 41–51, 1985. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  27. J. A. Khan, M. A. Z. Raja, and I. M. Qureshi, “Novel approach for a van der Pol oscillator in the continuous time domain,” Chinese Physics Letters, vol. 28, no. 11, Article ID 110205, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. H.-D. Chiang, J.-C. Wang, O. Cockings, and H.-D. Shin, “Optimal capacitor placements in distribution systems. I: a new formulation and the overall problem,” IEEE Transactions on Power Delivery, vol. 5, no. 2, pp. 634–642, 1990. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Hooke and R. Jeeves, “Direct search solution of numerical and statistical problems,” Journal of Association for Computing Machinery, vol. 8, pp. 212–229, 1961. View at Publisher · View at Google Scholar
  30. E. D. Dolan, R. M. Lewis, and V. Torczon, “On the local convergence of pattern search,” SIAM Journal on Optimization, vol. 14, no. 2, pp. 567–583, 2003. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  31. M. A. Raja, J. A. Khan, and I. M. Qureshi, “A new stochastic approach for solution of Riccati differential equation of fractional order,” Annals of Mathematics and Artificial Intelligence, vol. 60, no. 3-4, pp. 229–250, 2010. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  32. T. R. Ramanan, M. Iqbal, and K. Umarali, “A particle swarm optimization approach for permutation flow shop scheduling problem,” International Journal for Simulation and Multidisciplinary Design Optimization, vol. 5, article A20, 6 pages, 2014. View at Publisher · View at Google Scholar
  33. A. M. Elaiw, A. M. Shehata, and M. A. Alghamdi, “A model predictive control approach to combined heat and power dynamic economic dispatch problem,” Arabian Journal for Science and Engineering, vol. 39, no. 10, pp. 7117–7125, 2014. View at Google Scholar
  34. S. Thum and R. Schilling, “Optimization of hydraulic machinery bladings by multilevel CFD techniques,” International Journal of Rotating Machinery, vol. 2, pp. 161–167, 2005. View at Google Scholar
  35. Z. A. Vale, C. Ramos, P. Faria et al., “Comparison between deterministic and meta-heuristic methods applied to ancillary services dispatch,” in Trends in Applied Intelligent Systems, vol. 6096 of Lecture Notes in Computer Science, pp. 731–741, Springer, Berlin, Germany, 2010. View at Publisher · View at Google Scholar
  36. A. Ş. Uyar, B. Türkay, and A. Keleş, “A novel differential evolution application to short-term electrical power generation scheduling,” International Journal of Electrical Power and Energy Systems, vol. 33, no. 6, pp. 1236–1242, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. K. P. Wong and Y. W. Wong, “Genetic and genetic/simulated-annealing approaches to economic dispatch,” IEE Proceedings: Generation, Transmission and Distribution, vol. 141, no. 5, pp. 507–513, 1994. View at Publisher · View at Google Scholar · View at Scopus
  38. C.-T. Su and C.-T. Lin, “New approach with a Hopfield modeling framework to economic dispatch,” IEEE Transactions on Power Systems, vol. 15, no. 2, pp. 541–545, 2000. View at Publisher · View at Google Scholar · View at Scopus