Table of Contents Author Guidelines Submit a Manuscript
Advances in Fuzzy Systems
Volume 2010, Article ID 258947, 4 pages
http://dx.doi.org/10.1155/2010/258947
Research Article

Two New Types of Rings Defined by Using a Translational Invariant Fuzzy Subset

Department of Mathematics, Irbid National University, P.O. Box 2600, Irbid 21110, Jordan

Received 4 March 2010; Revised 16 June 2010; Accepted 10 August 2010

Academic Editor: Eyke Huellermeier

Copyright © 2010 Manal Ghanem. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Kaplansky, “Elementary divisors and modules,” Transactions of the American Mathematical Society, vol. 66, pp. 464–491, 1949. View at Google Scholar
  2. A. Bouvier, “Sur les anneaux de fractions des anneaux atomiques présimplifiables,” Bulletin des Sciences Mathématiques, vol. 95, pp. 371–377, 1971. View at Google Scholar
  3. A. Bouvier, “Anneaux présimplifiables,” Comptes Rendus de l'Académie des Sciences Paris, Series A-B, vol. 274, pp. A1605–A1607, 1972. View at Google Scholar
  4. A. Bouvier, “Résultats nouveaux sur les anneaux présimplifiables,” Comptes Rendus de l'Académie des Sciences Paris, Series A-B, vol. 275, pp. A955–A957, 1972. View at Google Scholar
  5. A. Bouvier, “Anneaux présimplifiables,” Revue Roumaine de Mathématiques Pures et Appliquées, vol. 19, pp. 713–724, 1974. View at Google Scholar
  6. D. D. Anderson and S. Valdes-Leon, “Factorization in commutative rings with zero divisors,” The Rocky Mountain Journal of Mathematics, vol. 26, no. 2, pp. 439–480, 1996. View at Publisher · View at Google Scholar
  7. D. D. Anderson and S. Valdes-Leon, “Factorization in commutative rings with zero divisors. II,” in Factorization in Integral Domains, vol. 189 of Lecture Notes in Pure and Applied Mathematics, pp. 197–219, Marcel Dekker, New York, NY, USA, 1997. View at Google Scholar
  8. D. Spellman, G. M. Benkart, A. M. Gaglione, W. D. Joyner, M. E. Kidwell, M. D. Meyerson, and W. P. Wardlaw, “Principal ideals and associate rings,” JP Journal of Algebra, Number Theory and Applications, vol. 2, no. 2, pp. 181–193, 2002. View at Google Scholar
  9. D. D. Anderson, M. Axtell, S. J. Forman, and J. Stickles, “When are associates unit multiples?” The Rocky Mountain Journal of Mathematics, vol. 34, no. 3, pp. 811–828, 2004. View at Publisher · View at Google Scholar · View at MathSciNet
  10. L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, pp. 338–353, 1965. View at Google Scholar
  11. A. Rosenfeld, “Fuzzy groups,” Journal of Mathematical Analysis and Applications, vol. 35, pp. 512–517, 1971. View at Google Scholar
  12. W. J. Liu, “Fuzzy invariant subgroups and fuzzy ideals,” Fuzzy Sets and Systems, vol. 8, no. 2, pp. 133–139, 1982. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  13. A. K. Ray, “Quotient group of a group generated by a subgroup and a fuzzy subset,” Journal of Fuzzy Mathematics, vol. 7, no. 2, pp. 459–463, 1999. View at Google Scholar
  14. A. K. Ray and T. Ali, “Ideals and divisibility in a ring with respect to a fuzzy subset,” Novi Sad Journal of Mathematics, vol. 32, no. 2, pp. 67–75, 2002. View at Google Scholar