Table of Contents
Asian Journal of Neuroscience
Volume 2013, Article ID 102602, 18 pages
Review Article

Renin Angiotensin System in Cognitive Function and Dementia

1Department of Biotechnology, Krishna University, Machilipatnam, Andhra Pradesh 522 001, India
2Department of Biochemistry, Kakatiya University, Vidyaranyapuri, Warangal, Andhra Pradesh 506 009, India

Received 20 July 2013; Accepted 13 August 2013

Academic Editors: Y. Kuroiwa, K. S. J. Rao, and H. Tokuno

Copyright © 2013 Vijaya Lakshmi Bodiga and Sreedhar Bodiga. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Angiotensin II represents a key molecule in hypertension and cerebrovascular pathology. By promoting inflammation and oxidative stress, enhanced Ang II levels accelerate the onset and progression of cell senescence. Sustained activation of RAS promotes end-stage organ injury associated with aging and results in cognitive impairment and dementia. The discovery of the angiotensin-converting enzyme ACE2-angiotensin (1–7)-Mas receptor axis that exerts vasodilator, antiproliferative, and antifibrotic actions opposed to those of the ACE-Ang II-AT1 receptor axis has led to the hypothesis that a decrease in the expression or activity of angiotensin (1–7) renders the systems more susceptible to the pathological actions of Ang II. Given the successful demonstration of beneficial effects of increased expression of ACE2/formation of Ang1–7/Mas receptor binding and modulation of Mas expression in animal models in containing cerebrovascular pathology in hypertensive conditions and aging, one could reasonably hope for analogous effects regarding the prevention of cognitive decline by protecting against hypertension and cerebral microvascular damage. Upregulation of ACE2 and increased balance of Ang 1–7/Ang II, along with positive modulation of Ang II signaling through AT2 receptors and Ang 1–7 signaling through Mas receptors, may be an appropriate strategy for improving cognitive function and treating dementia.